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S IIPREFACE

In this book we have attempted to give an analytical, thorough account of the
progress that has been made in the field of Endochronic Plasticity* during the the
last sixteen years since its inception. We believe that anyone with advanced
knowledge in the field of solid mechanics will have little difficulty following the
analytical exposition. -- Often- we have given simple worked examples to aid the reader.
even though we suspect that at times we may have been somewhat concise.

It is our hope that the large number of applications to real material behavior
and the copious instances of favorable comparison with experiment presented herein
will convince, even the most casual reader that the theory has indeed a "natural"
basic and intrinsic capability for describing remarkably well the plastic behavior of
materials. Furthermore it is a theory that can be taught in the classroom in a
rational and sequential manner, particularly since the material functions can be

S;-determined from well-defined experiments. Furthermore. it also contains classical von
Mises plasticity as a special case.

We do not doubt that there exist cases - and more will be found -- where the
theory will not describe the observed behavior with the kind of accuracy presented

i here. For instance, hardening of face-centered cubic metals in cyclic paths in more
than one dimension may be one such case. We believe that what will be called for
here is not a new theory but a modification of the hardening function, possibly from
scalar to tensorial. Thus the fundamental constructs of the theory will remain
unchanged.m

Throughout the evolution and development of the theory we have tried to retain
a central unity, simplicity and an economy of form whereby various manifestations of
the mechanical response of a material are merely "projections" of the constitutive
equation on that "response plane". We have. in fact. refrained from "dichotomies"
whereby one form of a constitutive equation of a material would be applicable to one
class of strain histories and another form to another. The benefit of this approach.
apart from its esthetic value, is that if a constitutive equation has a broad validity
then it must be representative of physical reality and can form a basis for the
understanding of the internal physical processes that underlie the observed phenomena.
We feel that the examples presented in this book. to illustrate the application of the

* The term "Endochronic" was coined by Valanis from the Greek language and
means internal (endo) time (chronos).



theory. provide strong support for this approach.

There are a number of interesting topics pertinent to the endochronic theory that
have not been discussed in this book. These include large deformations, rate-
dependence and creep, damage and fracture. dilatancy. and numerical methods for
treating endochronic models in large finite element or finite difference computer codes.

ON These topics will be covered in an upcoming second volume of Endochronic Plasticity
by the same co-authors.
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* 1. INTRODUCTION.

1.1 Plasticity and Thermodynamics.

In 1970. the year when the first two papers [1.1. 1.2] on endochronic plasticity
were actually conceived, the foundations of the existing theory of plasticity, which is a
mathematical theory for rate-indifferent behavior, were basically mechanical. The
fundamental hypothesis upon which this theory rested was, and still is. that there
exists a yield surface in stress space which determines whether a change in the stress
state in a material neighborhood will (a) give or (b) not give rise to a plastic
deformation of that neighborhood. See, for instance Fung [1.31 for the climate of
thought at that time.

It was further postulated that. in the event that (a) is true, the increment in
plastic strain is normal to a potential surface in stress space. In the "associated flow
rule" theories the yield surface and the potential surface are identical. The shape and
size of these surfaces is generally assumed to depend on the state of stress, the
temperature and the history of plastic deformation. The precise nature of this
dependence was a matter of conjecture and simple models such as "isotropic" or
"linear kinematic" hardening, or combinations thereof were introduced in the literature

U in the course of time.

Experimental programs undertaken by a number of investigators to resolve this
question revealed that different definitions of yield give rise to differing modes of the
manner in which the topology of the yield surface changes with deformation. Since
the onset of yield is not a well-defined physical phenomenon and depends a great deal
on the sensitivity of experimental measurement the question must be asked of whether
yield is an a priori essential ingredient in a constitutive formulation of the mechanical
response of metals, or merely a convenient a posteriori idealization. Furthermore.
despite extensive experimentation, notably by Phillips. the experimental determination
of the precise constitutive dependence of the geometry of the yield surface on the
history of plastic deformation remained unresolved. (As it happens the endochronic
theory answered this question explicitly by determining that the back stress is a linear
functional of the plastic strain history, but more will be said about this later in
Chapter 3.)

From the physical perspective, experimental observation suggests that in the
presence of monotonically increasing deformation at constant strain rate. the stress
response of metals at room temperature shows little sensitivity to the actual value of

I-1



the strain rate over a fairly broad range (10 - 10-1 secl). Under these conditions
1 plasticity appears to be an appropriate theory insofar as rate insensitivity is concerned.

On the other hand. as the temperature increases strain rate sensitivity becomes
more pronounced to the point where viscoelasticity (without yield and albeit non-
linear) appeared to experimenters to be a more appropriate theory for the mechanical

m behavior of metals. Seemingly. temperature appears to play an important role in
determining whether "yield" is an essential constitutive ingredient in a theoretical
formulation of metal behavior. Moreover there was the nagging question as to why
thermodynamics could not play a more central role in the formulation of a constitutive
theory for metal plasticity.

The decade of the sixties saw a rapid development of the theory of irreversible
thermodynamics of internal variables as a rigorous branch of phenomenological science
pertaining to the deformation of materials, even though its impact was not realized
until a decade later. See typically Refs. [1.41 to [1.111. Until then. irreversible
thermodynamics remained an obscure field of science where the "equilibrium state"
played a basic role and irreversibility was understood only as a small deviation from
this state. So long as a system (or process. or both) was near equilibrium,
thermodynamic equilibrium relations applied, approximately (but not otherwise).

U
At the beginning the internal variable theory was developed in conjunction with

linear systems (linear rate equations) with the implicit assumption that this was a
theory of irreversible systems near equilibrium (see Refs. [1.4] to [1.8j). Even after
the removal of this limitation by Valanis and Coleman [1.9. 1.10, 1.11] there was still

1 lnot a clear distinction between an equilibrium state and a thermodynamic state and a
recognition that in the new context, a thermodynamic state is not necessarily an
equilibrium state or a near-equilibrium state. This was probably due to the fact that
the existence of entropy for systems far for equilibrium was still open to doubt and
was accepted grudgingly only for systems (or processes) near equilibrium. Insofar as
plasticity of metals was concerned the internal variable theory was still regarded as an
approximation at best [1.12).

From an historical perspective Coleman [1.13]. in developing his functional
thermodynamics, must be credited for taking the bold step in assuming without proof
that an entropy function exists for systems far from equilibrium. The question of

1-2



* existence of entropy, however, still remained. In 1971. Valanis [1.14] published a
proof of existence of entropy for systems far from equilibrium making use of
Caratheodory's axiom of inaccessibility of thermodynamic states along reversible paths
11.151. In 1981 a more rigorous proof along similar lines was given by Valanis [1.16]
with a clear physical justification for the axiom of inaccessibility. The way was now
clear to apply the theory of irreversible thermodynamics of internal variables to
material systems far from equilbrium.

1.2 The Concept of Intrinsic Time.

Time is a measure of change. A change in the position of a pendulum from
one extreme to the other measures half a period. If the period of oscillation is one
second, then half a second is a measure of change in the above positions. In an
ideal pendulum the period is invariant, i.e.. the temporal distance between two specific
events (in this case the two extreme positions) is always constant. If now one
marks off on the real line points corresponding to the ends of half periods (or
periods) these points are all equidistant. A continuous time scale is now created by
assuming that the density of events between any two points is, in fact. constant. As
it happens the motion of the pendulum relative to its own time scale satisfies
Newton's second law of motion.1

Consider now another system which is not cognizant of a Newtonian time scale.
A metal whose stress response is strain rate insensitive is such a system. The
internal changes that determine the stress state begin at the onset of deformation and
end when the deformation stops. No further internal changes will take place unless
the state of deformation changes.

This is another instance in which time is a measure of change. In this case.
however, if there is no internal change there is no time change. Since the stress is,
inevitably, determined by the history of internal change, it is obvious that this history
cannot be defined with respect to the Newtonian time scale but by one that is
determined by the internal material changes brought about by the deformation. Such
a time scale is obviously intrinsic to the material at hand. Initially. "internal change"
was regarded in the broadest possible terms. For instance an affine rearrangement of
the atoms due to deformation was considered an internal change.

1-3



However. from a strictly phenomenological viewpoint, insofar as a material
neighborhood is concerned, all one can measure is the state of stress corresponding to
the current state of strain. More generally, and in geometric terms, to every strain
path in a nine-dimensional strain space (with an appropriate metric), there corresponds
a stress path in a nine-dimensional stress space. Thus if strain is regarded as the
input then the strain path would appear to qualify as an appropriate time scale with
respect to which the strain history (which determines the stress) could be defined.

This is indeed the position that Valanis took in 1970 in the work subsequently
published in Refs. 11.1] and 11.21) where he defined the intrinsic time measure d5 as
the increment of distance along the total strain path in a strain space with a
(material) metric e. Thus for small strains

(d)2 = dg d(1-1)

where I is the small strain tensor. Of course nothing is ever totally new under the
sun. ll'iushin [1.17] broached the idea of path dependence in terms of a path s
where

ds 2  = d . 9 dj (1-2)

* and Pipkin and Rivlin [1.18] examined the mathematics of functionals defined in terms
of this path but stopped short of testing the applicability of their equations to real
systems.

It should be pointed out that the lI'iushin measure ds is a very particular case
of d5 when e is isotropic and has the very restricted form

PijkL = 6 ik 6j (1-3)

Therefore ds is not intrinsic to the material at hand and is not applicable to materials
that are compressible and/or anisotropic.
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Subsequent work by Valanis [1.191 revealed that Eq. (1-1) gave rise to one-
4-,mensional stress-strain behavior which, at the onset of unloading, was not in

8 .eement with observation. Specifically in metals, the slope of the uniaxial stress-
strain curve at the onset of unloading was higher than the elastic slope, observed in
experiment. Also small hysteresis loops in the first quadrant of the uniaxial stress-
strain space did not close as is invariably observed.

These inadequacies of the theory were removed by Valanis [1.20. 1.211 upon
defining the intrinsic time measure in terms of the increment in plastic strain. Thus

de = dgp  d4p  (1-4)

For an extensive discussion of this issue see Section 2.3.

1.3 Endochronic Plasticity and Experiment.

The definition of intrinsic time given in Eq. (1-4). in conjunction with plastic
incompressibility and a weakly singular deviatoric memory kernel, gives rise to

i theoretically predicted behavior of metals that matches closely that which is observed
in experiment. For instance the continuous transition from elastic to plastic behavior
that one observes in most metals (one exception is mild steel at slow strain rates) is
now given by the theory by virtue of the continuity of the (deviatoric) memory kernel
at all z except z = 0. The singularity of the kernel at z = 0 ensures that the slope

1 of the uniaxial (or shear) stress-strain curve at the onset of unloading or reloading is
elastic.

No yield surface exists and. as a result, no experiments need be done to
determine such a surface and its wanderings in stress space. The two fundamental
and only material functions i.e.. the deviatoric memory kernel p(z) and the hardening
function F1 () -- that determine completely, in any number of dimensions, the stress
response of isotropic plastically incompressible materials -- can be found by means of
a uniaxial test. or shear test for that matter. If a yield point. i.e.. a sharp transition
between elastic and plastic behavior exists, this can be accounted for by the presence
of a delta function in the memory kernel at z = 0. The strength of the delta
function-is the yield stress. The continuous part of the kernel then determines the
evolution of the back stress. These points are discussed extensively in Chapter 3.
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OL,

1.4 The Book.

The book consists of ten chapters. Chapter 1 being the Introduction.

Chapter 2 deals with the constitutive development of the endochronic theory.
Section 2.1 deals with the basic thermodynamics of the endochronic theory.
particularly with the concepts that underlie the irreversible thermodynamics of internal
variables, and the derivation of constitutive equations for isotropic. plastically
compressible solids, in isothermal small strain fields. Section 2.2 deals with the
concept of intrinsic time and the necessity and sufficiency of its definition in terms of
Eq. (1-4).

Chapter 3 is devoted to the treatment of plastically incompressible bodies. To
begin, a simple worked example is given in Section 3.2. In the same section the

. properties of the deviatoric memory kernel and specifically the weak singularity in its
functional form are dealt with in some detail. Section 3.3 deals with the analysis of
the stress response to complex uniaxial strain paths involving arbitrary sequential
segments of loading and unloading. Extensive comparison with experimental data is
made in the case where the memory kernel is given by a simple weakly singular

U power form and remarkable agreement is demonstrated for a number of very complex
such paths. Section 3.4 deals with the very important question of the experimental
determination of the two basic material functions of plastically incompressible bodies:
the memory function p(z) and the hardening function Fs(5). It is shown that both
these functions can be determined from a uniaxial (or pure shear) experiment.

ft Section 3.5 deals with applications of the theory in more than one dimension.
Experimental evidence of the predictive capability of the theory is demonstrated in
heterogeneous two-dimensional strain fields, created in a plate with two symmetrically
placed edge cracks, by pulling in the axial direction, pulling and unloading, then
compressing, unloading and pulling and so on. Also in this section the ability of the
theory to predict the experimentally observed stress in the case of a number of
nonproportional strain paths in two dimensions, specifically tension-torsion, is clearly
demonstrated. Section 3.6 is devoted to endochronic plasticity with a yield surface.

1-6



This is an important section where it is demonstrated that if the memory kernel p(z)
contains a delta function (as it must when the number of internal variables is finite!
11.21). then the endochronic theory takes the special form of a von Mises yield surface
theory with non-linear kinematic-cum-isotropic hardening. Furthermore the theory gives
as a derived result, and for the first time in the history of plasticity. that the "back
stress" is a linear functional of the history of plastic strain. This result was obtained
by Valanis in 1980. See Ref. [1.211.

At the 1984 symposium on plasticity in Udine (see Ref. 11.22]) E. H. Lee made
an argument. later published as a discussion in the proceedings of the symposium,
p. 175. that "the back stress must be a function of the plastic strain" and merely
referenced himself 11.231. A study of this reference, however, failed to reveal a
demonstration that the back stress is a functional of the history of plastic strain.

Chapter 4 is devoted to the theory of compressible plastic isotropic solids, such
as soils and concrete. The full constitutive equation is reviewed and the various
consequences of plastic compressibility are illustrated. There are now four basic
material functions to be determined: the deviatoric and hydrostatic memory functions
p and #. respectively, and the deviatoric and hydrostatic hardening functions F and
FH . A straightforward experimental technique for their determination is given. It

i must be noted that this particular constitutive equation does not account for dilatancy
but a more general equation with dilatant capability has been derived recently by
Valanis and Peters [1.241 and applied to soils by Peters 11.251 and Valanis and
Read 11.26].

i •Chapter 5 deals with some general topics of central interest to plasticity. The
results, by Valanis. are totally new and have not appeared previously in the literature.
Section 5.1 treats the problem of history induced anisotropy. It is demonstrated that
in the case of a plastically incompressible solid, any plastic strain history with a
terminal zero stress will give rise to anisotropy. if the terminal state is regarded as a
reference state of a subsequent plastic strain history. Sections 5.2 and 5.3 are
devoted to the Drucker and l'iushin postulates. Contrary to accepted opinion, it is
proved that both of these postulates have a thermodynamic origin and are. in fact.

variants of one and the same postulate to the effect that:
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- The irreversible entropy production during an isothermal
cycle, closed either with respect to stress or strain, is
greater than the free energy release at the end of the cycle.

Section 5.4 examines the question of uniqueness of the solution of the initial and
boundary value problems of plastically incompressible bodies. It is shown in this
section that the solutions of the above problems are unique when the constitutive
equation given in Chapter 2 governs the material behavior of the continuum -- with or
without a yield surface.

Chapter 6 gives an overall discussion of the flow rules of endochronic plasticity
in the presence of plastic incompressibility. The essence of a "flow rule" is contained
in the following question:

*" r Given an increment of stress or strain, what is the

corresponding increment of plastic strain?

In a strict sense, the flow rules of endochronic plasticity are implicit in that the
plastic strain increment, corresponding to a stress or strain increment, can be
calculated directly from the constitutive equation. However, further analysis reveals
that simple rules exist -- known as "flow rules" -- which give the information on the
magnitude and direction of the plastic strain increment, without the need for a
computation involving the endochronic constitutive equation. These bear resemblance
-- but are not identical -- to the flow rules of classical plasticity and are a direct

1 |consequence of the singularity of the deviatoric memory kernel.

Chapters 7 and 8 give two different analyses for determining the flow rules of
endochronic plasticity -- in the presence of plastic incompressibility. The reasons
behind the two analyses are historical, as explained below. At the time the writing
of this book began. the flow rules in existence were those derived by Murakami and
Read in Refs. [1.27] and [1.28]. They considered the case of an arbitrary change in
the direction of a stress path which was previously smooth. The explicit orientation
of the plastic strain increment relative to the stress increment, however, was not
determined. The analysis by Murakami and Read, which also gives the orientation of
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the plastic strain increment relative to the ultimate surface, is given in Chapter 8.

In the course of writing Chapter 5. Valanis saw the possibility of an analysis
which determines the flow rules in general situations and proves that the plastic strain
path is continuous and has a continuous derivative at "loading" points but a
discontinuous derivative at "unloading" points. This analysis is given in Chapter 7.

W Because the methods of derivation are fundamentally different we felt that the reader
will benefit from both expositions. Needless to say. the results by both methods
agree when the appropriate conditions apply.

Chapter 9 pertains to the application of the endochronic theory of plastically
compressible solids to plain concrete. This work became possible by virtue of some
excellent three-dimensional experiments carried out at the University of Colorado [1.29].
In spite of the susceptibility of plain concrete to cracking, the material at hand. and
the nature of the experiments, were such that no significant damage to the concrete
was observed. The extremely complex behavior of this material notwithstanding, it is
demonstrated in this chapter that the theory has a remarkable capability for predicting
the observed response in cases of intricate, non-proportional three-dimensional stress
paths. In particular the phenomenon of shear-induced densification in the presence of
constant pressure is predicted. with great analytical economy, in closed form.

Finally. Chapter 10 deals briefly with analytical techniques for integrating
numerically the constitutive equation in the presence of arbitrary stress or strain
paths.

Before closing we would like to beg the indulgence of the many other
contributors to the endochronic theory. namely. Professor Han Chin Wu. Dr. H. C.
Lin. Dr. M. C. Yip. Professor Z. P. Bazant and more recently. Professor S. N. Atluri.
to name a few. whose contributions are now part of the technical literature. Pressure
of time has prevented us from discussing their work in this volume.
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2. THEORETICAL FOUNDATIONS OF THE THEORY

2.1 Basic Thermodynamics.

F-om a thermodynamic standpoint materials are divided into two basic and
distinct classes: reversible and irreversible (or dissipative). In reversible materials the
work done during homogeneous deformation and temperature is completely recoverable
and in a cycle of such thermomechanical process the material returns to its initial
state. Thus if temperature and strain denote the thermodynamic state of the system
then the internal energy and stress are "functions of state" in the sense that they are
determined by the current values of temperature and strain.

In this book. however, we shall deal with thermodynamics of dissipative
materials. The word "dissipative" is meant to denote that class of materials with the
following property: the work done during homogeneous deformation and temperature
is not completely recoverable in the sense that a measurable portion of it is converted
into "heat". i.e.. random vibrational energy of the constituent atoms of the material.
Because the loss of recoverable energy is a function of the strain (stress) and
temperature histories, the material response is also a function of the strain (stress)
and temperature histories. The above statement is tantamount to saying that the
stress (strain) at time t is not determined by the value of the strain (stress) and

1 Itemperature at time t.

In thermodynamic language, the stress (strain) in dissipative materials is not a
state function of strain (stress) and temperature and similarly other thermodynamic
functions such as internal energy and free energy are not either. Note that in the
above discussion strain and stress are used interchangeably depending on which is
regarded as the independent thermodynamic variable.

In the theory of irreversible thermodynamics of internal variables "'dissipative"
behavior is accounted for by introducing additional thermodynamic variables which are
not macroscopically measurable but whose physical existence is necessary for the
description of the observed physical phenomena. These variables are called internal
variables or internal state variables and are denoted by qr. In the present treatment
they will be regarded as second order symmetric tensors. Their number will depend
on the complexity of the material in question and on the degree of accuracy with
which one wishes to describe the material response.
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In a descriptive sense they could signify conformations of dislocations as would
be the case in metals or. more generally. non-affine motions of atoms and internal
flaws. Of significance is the observation that the internal variables cannot be
functions of state, otherwise their introduction would be redundant. As we shall
show they are in fact functions of the history of strain (stress) and temperature as
well. but we shall not be concerned with thermal effects in this book, even though
the general equations will be derived in the presence of a temperature field.

2.1.1 First Law of Thermodynamic.

The first law of thermodynamics is. in essence, a statement of conservation of
energy of a material system. The global form of the law concerns large material
systems whereas the local form pertains to infinitesimally small systems. The latter
is less general than the former in that it may be derived from it when conditions of
continuity and differentiability apply.

Given a finite material domain the First Law is a statement to the fact that:

The Rate of Change of Internal Energy + The Rate of Change of Kinetic
Energy = The Rate of Work Done by the Surface Forces + The Rate of
Work Done by the Body Forces + The Rate of Heat Supply by
Conduction. Radiation and Internal Heat Sources.

It is shown in standard textbooks on continuum mechanics (see 12.11. for
example) that when the First Law is applied to an infinitesimal system. the rate of
work done by the forces on the system by virtue of its rigid body motion, is exactly
equal to the rate of change of its kinetic energy so that the local form is now the
following:

The Rate of Change of Internal Energy = The Rate of Work Done by the
Stresses by Virtue of the Velocity Gradients + The Rate of Heat Supply
by Conduction. Radiation. and Heat Sources.

The appropriate analytical expression for the local form in the presence of a
small strain field is. then. the following:

2-2

) NOW



where e is the internal energy per unit undeformed volume. a.. the stress tensor. E..IJ

the small strain tensor, h. the heat flux vector, q the heat supply per unit undeforme-
volume and a dot over a quantity denotes differentiation with respect to time. One
may now proceed to define a quantity Q such that 4 is the rate of total heat supply
to the system by means of conduction and internal heat sources, that is

h h (2-2) -

so that the First Law now becomes

=ij eij + (2-3)

2.1.2 Second Law of Thermodynamics - Entropy.

Reversible Systems.

A fundamental issue of thermodynamics has been the question of existence of
entropy as a state function. This, of course, is a vast subject and we cannot do it
justice in this book. whose scope and purposes are different. We felt. however, that
a short discussion will be of value to the reader.

In reversible systems. entropy has not been in doubt ever since Caratheodory
12.21 argued its existence on the basis of inaccessibility of thermodynamic states
during quasistatic changes of state. Valanis [2.3.2.41 showed that in the case of
reversible systems entropy exists for the thermodynamic changes of state that are not
necessarily quasistatic on the basis of the physical observation that in a reversible
system under adiabatic conditions the temperature is a function of strain. Under
these conditions and on the basis that the internal energy e and the stress q are
state functions of strain I and temperature T. "the First Law is integrable" in the
sense that if one writes Eq. (2-1) in the form

e - , (2-4)

there exists an integrating denominator 9. (a generalized temperature) such that

0 0e-o.. .'' " :(2-5a)
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U
or

e =ij Cj (2-Sb)

m where 17. the ENTROPY. is a state function of strain and temperature. Thus. in

view of Eqs. (2-4) and (2-5).

or ('7= (2-6)

Equation (2-6) is known as the Second Law of Thermodynamics.

Irreversible Systems.

In the case of irreversible systems e and q are functions of strain, temperature
and n internal variables g. i.e..

I • = (cTi,,) , = = #,T, Or) (2-7a,b)

It has been shown by Valanis [2.3.2.41. that in irreversible systems also. an entropy
function exists, by virtue of Caratheodory's theorem of inaccessibility of states and
the First Law. In this case / is related to other thermodynamic quantities by means
of the following relation:

q . . ;q (2-8)

where 9 is a generalized temperature and the subscript q denotes the variation of a
quantity while the internal variables are kept constant. Of importance is the fact that
now '7 is a function of £. T (or 9) and Or:

'7 = Or(,TsSr) or '7 = 2 .rJ (2-9a,b)

We point out the essential difference between Eqs. (2-5a) and (2-8). In the case of
the former the rate of change of internal energy is equal to the rate of work plus the
temperature times the rate of change of entropy. In the case of the latter, the rate
of change on internal energy at constant Or is equal to the rate of work plus the
temperature times the rate of change of entropy at constant ,. As we shall see
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later this difference is going to make itself felt upon substitution of Eq. (2-8) in the
first law of thermodynamics. See Ref.[2.31.

If now one substitutes Eqs. (2-7) and (2-9) in Eq. (2-8). relations (2-10) follow:

. ( - 7) jTq (2-10)tJ - -ij 4

=T ' le, q=re I- e, (2-11)

where subscripts to the right of a vertical bar imply differentiation with the
corresponding quantities held constant.

Simpler results follow if one introduces the transformation

0 = 0(T1 (2-12)

and use 0 as an independent variable in Eqs. (2-10) and (2-11). In this case.

Ia or ZF (e - 81) I  (2-13)°iJ c 8 ij 10,q

Bel -(2-14)
IT,q 

T,q

Equation (2-13) suggests a new thermodynamic function (the Helmholtz free energy)
where

~=e-O, (2-15)

When use is made of this last relation in Eqs. (2-13) and (2-14). one finds the
standard" thermodynamic equations:

aiJ = ac. (2-16)

ij1,q
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_I (2-17)
le,q

which, insofar as solids are concerned, first appeared in the work of Biot [2.5. 2.6.
2.7. 2.8] and later Schapery [2.9J in the narrower context of 0 = T. their derivation
differing in that the existence of entropy was assumed. In the form given above.
they first appeared in the work of Valanis [2.3. 2.41 on the proof of existence of
entropy in irreversible systems.

The Clausius - Duhem Inequality.

Substitution of Eqs. (2-15). (2-16) and (2-17) into the First Law. Eq. (2-3).
gives the following result which is fundamental to the behavior of irreversible systems:

0; + ir(2-18)DO r

Note the difference between Eqs. (2-6). for reversible systems, and Eq. (2-18) for
irreversible systems, particularly as they relate the rate of increase of entropy to the
rate of heat supply. In the case of irreversible systems there is an extra term:
8# .r" The algebraic sign of this term is of central significance to irreversible
behavior.

We note that

82r 
(2-19)

In other words, the left-hand side of Eq. (2-19) i.e., the "extra term", is equal to the
rate of change of the free energy under constant temperature and fixed strain. The
constancy of temperature implies that no heat is being added to the system while the
fixed strain precludes work from being done on the system. Under these conditions
the free energy cannot increase since this "spontaneous" increase would imply an
increased capability to do work and the system would then serve as a continuous
source of mechanical energy, in the abspnce of external interference. Since such
systems are not observed in nature, we are forced to conclude that
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S< 0 (2-20)

so long as I lI rI # 0. an inequality which is characteristic of thermodynamically
stable systems. Use of inequality (2-20) in Eq. (2-18) gives rise to a second

I inequality, more commonly quoted.

(2-21)

when I lgrl 1 0 0. which is the Clausius-Duhem inequality, that applies to irreversible
systems.

2.1.3 Evolution Equations for the Internal Variables.

One of the central consequences of Ineq. (2-20) and the associated Eq. (2-19) is
the following inequality:

C11 o ir ) 0 (r not summed) (2-22)

for all such that I Ijr1 I 0. This, of course, is because Sr are independent
variables, in which case. a specific 9 may be varied while the remaining may be kept
constant. The implications of Ineq. (2-22) are profound. One main conclusion is
that - 8#/8g . on one hand, and ir' on the other, must be functionally related.
otherwise they could be varied independently so as to violate Ineg. (2-22). This
observation was made by Valanis (2.10. 2.11] who proceeded to suggest a general set
of evolution equations for gr of the type

f Lr(I r) , (r = 1,2 ... n) (2-23)

where is a deformation measure (Right Cauchy - Green tensor) not necessarily
pertaining to small deformation. These equations are commonly referred to in the
literature as the "Coleman" equations. because Coleman and Gurtin also proposed
them in Ref. [2.121. However, they point out in that reference that while their
manuscript was in progress Valanis had already proposed Eqs. (2-23) in Ref. [2.101.
We feel that we should make this comment so that the record can be corrected.
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Of course the form of Eqs. (2-23) cannot be arbitrary but must satisfy the
following inequality:

"r > 0 (2-24)

If one is dealing with a small deformation theory as is the case here. Eqs. (2-23)
become

i, = ,r(1i9r) (2-25)

where I is the small strain tensor.

A slightly different approach suggests itself if one recognizes that - 3#/52 are
internal thermodynamic forces associated with the internal mechanism r and seeks adirect relationship between and - a#/Bg. In this case one may set

diec reatonhi bew en2

= - (2-26)

The negative sign has been chosen for convenience so that the functions Lr satisfy
the inequalities:

Y- ' f r ) 0 (2-27)

2.1.4 The Intrinsic Time Scale.

The concept of intrinsic time and its role in the constitutive theory of solids
and. later liquids, was introduced in conjunction with the plasticity theory of metals
by Valanis [2.131. The basis of the concept lies in the proposition that a material
senses rates of change associated with its constitution, not with respect to the
Newtonian time t but an intrinsic time z. which is a property of the material at
hand. Related ideas have stemmed from the observation that in certain cases the
constitutive response of a material is most precisely and elegantly formulated by not
using the actual time but a "reduced" time in the formulation. For instance this is
the case in the "WLF equation" in polymers (2.15] where the "reduced" time is
related to the Newtonian time t by the relation
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dC dt (2-28)
IT

where aT is a function of temperature. The term "reduced" was actually introduced
by Schapery [2.161 who used it in relation to a definition of df given in one
dimension by the expression:

dt (2-29)
a apue)

where a is the stress and e the strain rate. However. the very philosophy of
Eq. (2-29) suggests an effect of the field (temperature. stress or strain rate field) on
the time scale rather than a material time per se. i.e.. an intrinsic time which is a
material property of the substance at hand.

The subject will be discussed again at much greater length in Section 2.3 where
a derivation of the intrinsic time scale is given. The significance of the proposition in
so far as thermodynamics of evolution equations for % is concerned is that in
Eq. (2-26) the rate of change of Or is with regard to the intrinsic time z. so that the
evolution equation for 9r now becomes

dg O r ( 0 .(2-30)

Of particular interest in the linear form of Eqs. (2-30) which will be the basis of the
theory presented in this book. This form is obtained on the basis of the proposition
of classical irreversible thermodynamics, whereby the "internal forces" 80/8g. are
proportional to the "fluxes", in this case the rates of the internal variables and is
given by the equations:

(r) . dzr = 0 (2-31)

Here b(r) is a fourth-order tensor, symmetric, and positive definite, the last property
being necessary to satisfy the Clausius-Duhem inequality (2-22). The tensor b I ) is
called the "dissipation", or resistance tensor for obvious reasons.
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2.1.5 Recapitulation.

The thermodynamic formulation of constitutive equations of dissipative materials
consists of the following steps.

(i) Specifying the form of the Helmholtz free energy # where

= (2-32)

Insofar as small strain theory is concerned the form of Eq. (2-32) 0
is discussed at length in subsequent sections.

(ii) Using Eqs. (2-16) and (2-17) to determine the stress and the
entropy in terms of 1. e and 9 r,

(iii) Solving Eq. (2-31) to obtain the gr as a function of the history
of strain and temperature relative to the intrinsic time scale z.

(iv) Determining the intrinsic time scale. This last step will be
discussed in Section 2.3 for the case of rate independent
materials.

2.2 Formulation of the Theory for Isothermal Small Strain Problems.

2.2.1 Basic Equations.

In the presence of small strain and uniform temperature fields we write the free
energy density # in the quadratic form given below with the upper index of
summation left unspecified.

= ~ - S] .(2-33)

r

where are the internal variables of the material system, I is the strain tensor and
Ar is the elastic stiffness tensor associated with the mechanism r. The physics of
Eq. (2-33) become apparent upon the following observations.
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Let internal constraints be applied to the system so that the quantities (k a
vanish for all r except when r = n. In this case

On _,n -1 (2-34)

* Since at constant temperature the Helmholtz free energy has the physical significance
of the elastic (recoverable) energy. it follows that An is the elastic stiffness tensor
associated with the deformation of mechanism n and

(2-35)

where ja is the elastic strain of the material system when only the n th mechanism is
operative. Thus Eq. (2-34) becomes

1 n 0' (2-36)

so that 1 in Eq. (2-36) is the strain energy associated with the deformation related to
the mechanism n. In conventional plasticity terms. On is the plastic strain associated
with mechanism n since indeed by definition

IP = 4-  O n (2-37)

the strain I being common to all mechanisms.

The basic thermodynamic relations of interest are:

§1 = Z: r.( - Or (2-38)
r

dgr

- 0 (2-39)
0 r

and thus in view of Eq. (2-33) we have:

2-11



.dgr (2-40)r- .= - '

where z is an intrinsic time scale, which for the moment we leave undefined, and r
is the resistance (or dissipation) tensor associated with mechanism r.

It may be shown straightfowardly that if both 6r and r have isotropic forms for
all r. then Eqs. (2-38) and (2-40) uncouple into hydrostatic and deviatoric forms in
the following fashion:

= 61 = , +9 = q + q (2-41a,b,c)

OS + O H (2-42)

s= 2 rII-I i' OH . 2 LKIE 12 - q-1 2  (2-43a,b)
r r

, 8= 0 = BO (2-44a,b)

801) r 82 r 80H b r aq r 0 24ab
ag' r - 1 -z= 0 , 8q-- r o Oz = 0(-4ab

where

Ar Ar . 6  +Ar .6. (2-46)
ijk. 1 ij kL 2 ikj.

br j br 6 + b66 (2-47)
ijk. 1 i k. 2 ikjL.

Ar

A r K =Ar A2 (2-48a,b)

r r 1 - 3
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b r

0  1  3 (2-49)

If at this juncture. one defines internal forces by the relations

WE. =- 0 r ,q (2-50a, b)

the evolution equations (2-45a.b). in conjunction with the energy relations (2-43a.b).
give rise to the following "rate" equations for the internal forces:

Air  dir dg
d, B =  (2-51)

b r dz 'r dz

K r dQrE de

rq d Kr (2-52)

b br r dz r rdz

while Eqs. (2-44a.b) become:

= R r (2-53)

a O r (2-54)
r

Thus following the above analysis. the constitutive response of the material system is
completely defined by Eqs. (2-51). (2-52). (2-53) and (2-54).

In general the resistance coefficients br and br are not constant but depend on
0 1the stress field and/or the strain field and the temperature field histories in a fashion

which for the time being we leave unspecified. However, we introduce this
dependence by means of the functions Fs and F H which are such that

b =boFS , b0  boFH (2-55ab)
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and introduce the notation

/ r K
O K r- (2-56a,b)
br r ' r r10 0O0

dz dz (2-57a,b)

where # * br K. br and k are positive material constants. The significance of ther ' 00
constant k will be discussed in Chapter 4. In terms of the above notation
Eqs. (2-51) and (2-52) are now linear and have the forms

dJ~r  d#

aOrr z+  = rd (2-58)
3 s

dQX K - (2-59)

rrd H rdzH

Equations (2-58) and (2-59) may be integrated and the results substituted in
Eqs. (2-53) and (2-54) respectively, to obtain constitutive equations in explicit integral
form. which relate the current stress to the history of strain.

Insofar as the internal forces a and Qr are concerned, they are given by
Eqs. (2-60) and (2-61) where it is shown that k and Qr are linear functionals of the
deviatoric and hydrostatic strain histories, respectively. The memory kernels are
positive decaying exponential functions which endow these forces with the
characteristic of fading memory.

rS _a (z-z') d
zr = (2-60)

.0
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Zl,, _"- r(ZH - z ') d

K r - dz' (2-61)

0

Substitution of Eqs. (2-60) and (2-61) in Eqs. (2-53) and (2-54) respectively gives the
explicit constitutive representation of the stress response in terms of Eqs. (2-62) and
(2-63) where on one hand the deviatoric stress I is a linear functional of the history
of the deviatoric strain while on the other, the hydrostatic stress a is a linear
functional of the history of hydrostatic (volumetric) strain.

E= 41 i[Z s - z'}j , dz" (2-62)

.0

,ZH

K = K( ZH- zd-" dz (2-63)

0

The corresponding kernels #i(z ) and K(zH) are given in terms of sums of positive
decaying exponentials (Dirichlet series) according to the following equations:

# = r s (2-64)
r

KzH) = Kre rH (2-65)
r

The set of Eqs. (2-53). (2-54). (2-58) and (2-59) as well as the set of
Eqs. (2-62). (2-63). (2-64) and (2-65) constitute alternative representations of the
stress response to a history of strain with respect to the intrinsic time scale z. which
is still undefined. See Refs. [2.17. 2.18. 2.19].

2-15



2.2.2 Plastic Strain as an Independent Variable.

The definition of plastic strain. (already used in Eq. (2-37) when only one
mechanism was operative), is given by the expressions:

Ip = (2-66a)

e= f - e (2-66b)

where

dSe - 2# d e* =(2-67a, b)

20 K0

and # and K are. respectively, the elastic shear and elastic bulk moduli. At this
point we make certain observations. If. as is customary, we define 2#s as the initial
slope of the shear stress-strain curve, then it follows from Eq. (2-62) that

So=/(0) , (2-68)

since at vanishingly small z .

g = 21s (0) . (2-69)

Similarly,

Ko = K(0) , (2-70)

on the basis of Eq. (2-63). Thus in that which follows, and without further
comment, we take #0 = #(0) and K° = K(O).

With specific reference to the shear response. it is shown in Ref. [2.14] that if
one substitutes for I in Eq. (2-62) using Eq. (2-61a) one obtains the shear response.
as an explicit linear functional of the plastic deviatoric strain history. in the following
form:
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I

a= p - dz" , (2-71)

dod

where p(z)S is related to js(z ) by the integral equation given below:

p(z) !- #- ifzs - z) -dz 2pz) (-2
0

l0

Here p(z) is given in series form by Eq. (2-64). Without solving for p(z) explicitly.
it is important to consider the effect on the functional form of p(zs) of the constraint

/#o = P(0) (2-73)

In view of the fact that #(zs) consists of a series of decaying exponential terms it
may be written in the form

/6(zs) = #(0) H(zs) + ,*.(z) , (2-74)

B where H(z ) is the Heaviside unit step function and #* is differentiable at the origin,

.e., d dz at z s = 0 is finite. Substitution of Eq (2-74h) in Eq (2-72) yields the
result:

Is"
p - 1_oI p(zs) - LoJ p(zs z Jd" dz' = () (2-75)

=00

Thus at z 0

p(O) - p(0) = /(0) (2-76)
/2
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or

LOp(O = L0 (2-77)
p(O)_ 1-(-

In view of the constraint (2-73a). it follows that

p(O) = a (2-78)

In Ref. [2.141 Eq. (2-72) was solved explicitly when the number of terms on the
right-hand side of Eq. (2-64) is finite and equal to n (i.e.. when the number of
internal variables is finite). It was then shown that p(zs) is given by the expression:

n-1 PrZs
p(zs) = po6(zs) + Z pr (2-79)r=1

where r p. and Pr are all positive. In other words, the memory kernel p(z5 ) consists
* of a singular part which contains the Dirac delta function, and a well behaved part.

which is the sum of a finite number of positive, decaying exponential terms. Note
that the above result is independent of the definition of the time scale z which, in
special cases, could be identical to the ordinary time t. as in viscoelasticity, for
instance.

Substitution of Eq. (2-79) in Eq. (2-71) gives the explicit result

dep  d p

= PO p + 1 (z - z') z dz , (2-80)

where

n-1 -rz
Pl (z) = FPre r (2-81)

r=1
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The same argument applies also to the hydrostatic response. Specifically, when the
number of hydrostatic internal variables is finite, we can write:

deo H ZH Z dz (2-82)_ 3 J N/ - z) dz'
.0

In other words there exists a function #(zH) such that

OZH) = o Z (zH) 0N) , (2-83)

where 0 is positive and #(ZH) consists of a sum of positive decaying exponentials,
* :i.e..

1Z.f) = Zr r zH (2-84)

The function *(zH) is related to the function K(zH) (Eq. (2-65)) by the integral
equation

m ¢( Z H ) - - z J d z = K IZ H J ( 2 -8 5 )

0

A significant characteristic of Eq. (2-80) (or. Eq. (2-82)) is that the stress is
non-zero at the onset of deformation, i.e.. at zs = 0 we have:

P o (2-86)

where the right-hand side of this equation has the significance of a yield stress.
Thus the shear stress-plastic strain curve is discontinuous and has an infinite slope at
the origin of plastic deformation. Similar conclusions also apply to the hydrostatic
stress-plastic strain curve.

2-19



2.2.3 Discussion of the Above Results.

Let us now examine the physical. mathematical and thermodynamic significance
of the above results. The physical significance is illustrated in the mechanical model
of Figure 2.1.

1 The strain j admits the decomposition shown in Eq. (2-66a) provided that the
elastic stiffness 2 11 of the spring is also the elastic stiffness of the entire system.
and the plastic solid, in series with the spring, is a rigid-plastic solid, in the sense
that the slope of its stress-plastic strain curve is infinite at the onset of deformation.
In this event the stress response of the rigid-plastic solid is given solely in terms of
the history of the plastic strain. ep.

In mathematical terms, given the constitutive equation (2-62) which relates the
stress to the history of total strain in terms of a kernel #(z ). given by Eq. (2-64).
there exists an equivalent set of constitutive equations (2-66a). (2-67a) and
Eq. (2-71). which relates the stress to the history of plastic strain through another
kernel p(z ) such that p(o) = a. The two kernels p and # are related by means of
Eq. (2-72) . Of importance is the fact that one need not begin with Eq. (2-62) but
with Eq. (2-71) and the kernel p(zs) of the rigid-plastic solid and obtain #(zs). which

*i pertains to the entire system, upon use of Eq. (2-72).

The thermodynamic significance is equally important. The rigid-plastic body may
now be treated as a separate thermodynamic system. whose strain state is
represented by the deviatoric plastic strain tensor 1P. Thus the thermodynamic
treatment developed in this chapter beginning with Eq. (2-33) applies to the rigid-
plastic body. except that t is replaced by P. Thus equations analogous to
Eqs. (2-62) and (2-63) are derived, following the indicated procedure, which now have
the form

3de p

PZs - z- dz (2-87)

"0

and
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Figure 2.1 Appropriate physical model.
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1z H JZe dz , (2-88)

.0

1 the only condition being that p(O) = 0(0) = *. Of course p(z5 ) and #(z H) must be
integrable over any finite domain to ensure that and a are bounded. The necessary
and sufficient condition that this should be the case. is

j p(z') < - , j (z')dz" < c 
(2-89)

.0 0

; for all finite zs and zH. as will be shown in the following section.

It was shown earlier in this chapter that the rigid-plastic solid can be treated as
a separate thermodynamic entity whose strain state is given by the plastic strain
tensor. For the sake of discussion we consider the case of the deviatoric response

i given by Eq. (2-71). The deviatoric thermodynamic state of the system may be
described by the deviatoric plastic strain tensor and n internal variables, the number
of which may be finite or infinite. We shall show that the choice has significant
effect on the form of the kernel function p(z ). However, in any event, the function
p will consist of a series of decaying exponential terms, the number of which we

* leave unspecified for the time being. In effect

p(zs) = Rr, - P r zs (2-90)

r

We now investigate the constraints on the form of the exponential terms imposed by
the infinite value of p at z = 0. We first examine the case where the number of
internal variables. i.e., the number of terms in the series is finite. We recall that the
analysis in Section 2.2.2 demands that p(z S) must, in this case, contain a delta
function. Thus one of the terms in the series (2-90) must be a delta function. This
does not pose a difficulty since a delta function is the asymptotic representation of an
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exponential function R e'Prz. whose amplitude Rr and exponent r tend to infinity
simultaneously while their ratio remains constant. This ratio is in fact the strength
of the delta function.

Thus in the case of a finite number of internal variables one satisfies the
condition p(o) - a. by letting at least one member of the series become a delta
function by means of the asymptotic process discussed above. In fact. this is the

1 only possible avenue since if all R are finite then p(o)(=ER) is also finite. We noter r .

again that in this case the stress-plastic strain curve is discontinuous at the origin of
plastic strain. In other words, the rigid-plastic solid with a finite number of internal
variables will always exhibit a yield stress.

The case of an infinite number of terms in the series offers different possibilities
in the sense that one, now, has a choice. To satisfy the condition p(o) = a one
may again set one (or more) exponential terms equal to a delta function, as in the
case of the finite number of terms, but now there is another choice, since one may
set

p(O) = K = (2-91)1 r=1

by requiring that the series in Eq. (2-91) diverge. In addition, the boundedness of
the stress response must be considered. To this end let s be a typical component of

and ep the corresponding component of SP. Then, from Eq. (2-71), we have:

Is  deP

S= P(z z') de dz' (2-92)

Consider the class of histories for which deP/dz is a constant and equal to 0. In the
absence of hydrostatic stress a monotonic constant strain rate history would be a
member of this class. Then in view of Eq. (2-92)
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s = (zs- z') dz = p(z')dz" (2-93)

0 0

Thus boundedness of stress response necessitates that

zrjp(z')dz' z (2-94)

.0

v- To prove sufficiency for general strain histories we recall Eq. (2-71) and note the
integral inequality, which is a direct consequence of the triangle inequality.

mIdIl J.p(z5 -z ')dz' (2-95)

Thus. in view of Ineq. (2-94) I1111 will be bounded for all bounded I IdtP/dz I1. In
conclusion, the necessary and sufficient condition that I be bounded for all tounded
strain histories -- in the sense that I I dP/dzs I < w -- is that Ineq. (2-94) is
satisfied, for all kernels p(z ) that satisfy the Ineq. (2-94). Returning to Eq. (2-90)
the corresponding constraint on Rr and Pr is that

r < so (2-96)
r"=1 A

One can verify that the conditions (2-91). (2-96) are satisfied for a general class of
functions p(zS) such that

R
R 0 (0 < a 1) (2-97)Rr -l a

r
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and
I

K) (2-98)

where is a positive constant and K a positive integer. Thus.

p -kP 0z5  R 0 (2-99)
S~3 r=1 r1a

The importance of this class of kernels lies in the fact that the stress is zero at
the onset of plastic deformation. This may be seen directly from Ineq. (2-95) which
shows that

iico)ll = o, (2-100)

since, at z = 0. the integral on the right-hand side of the inequality vanishes. Thus
kernels of this type apply to materials that do not exhibit an abrupt transition from
elastic to plastic behavior, i.e.. do not exhibit a finite yield stress. Instead, plastic
effects take place immediately upon deformation and there is gradual transition from a
predominantly elastic to predominantly plastic behavior.

The above cases are summarized in the following form of the kernel p:

3 P(z) = Po(zs) + PI(Zs) (2-101)

Case (i): p0 ; 0, Pl(O) < a

In this case a yield stress exists and the slope of the stress-strain curve at the
onset of plastic strain is finite. Thus there exists a "kink" in the stress-strain curve
at the yield point as shown in Figure 2.2.

Case (ii): p 0 0. p,(0) = a

A yield stress exists and the slope of the stress-plastic strain curve is infinite at
the onset of plastic strain. Thus the stress-strain curve at the onset of yield is
continuous.
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Figure 2.2 Stress-strain curve with a kink at the yield point.

2-26



Case (iii): p = 0 . px(O) =

A yield stress does not exist. There is a gradual transition from predominantly
elastic to predominantly plastic behavior.

2.2.4 Integral Representation of the Memory Kernels.

With reference to p(zs) consider the representation of this kernel by an infinite
number of terms, i.e.. let

p (z) = Z R re -  (2-102)
r=1

Furthermore, let Rr = oR(r) and Pr = 0 r. Then Eq. (2-102) becomes

p(z5 ) = s R ( P rzs  (2-103)
r=1

Let the exponentials be "very closely packed" in the sense that Po is a small quantity
I which we denote by Ax. Then Eq. (2-103) becomes

0 -rAxz
p(zs) = 2 AxR(rAx)e s (2-104)

r=1

But

- -rAxz S -xzsJim AxR(rAx)e R) dx (2-105)

&x'o r=1
10

whenever the integral exists.

Thus in the limit of vanishingly small Po i.e.. infinitely closely packed exponential
terms p(zs) is given by an integral. i.e..

Si
I -r

p(zs) = R(r)e sdr (2-106)

10
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Thus p(z) is the Laplace transform of R(r). the latter being the spectrum of the
1 memory tGnction p(zs).

We give a number of examples below to illustrate the structure of the integral
representation given by Eq. (2-106). To fix ideas let

R(r) = R 6(r - ro) (2-107)

i.e.. the distribution R(r) is given by a 6-function of strength R and located at
r = ra. In this case Eq. (2-106) gives 0

-rz

p(zs) = Ro 0  s (2-108)

V i.e.. p(zs) is given by a single exponential.

Now let R(r) have the "power form" representation

(r) , r r-109)

Ro(r - r0)- 1 , o 1 (

Then

p(zs) = Ro(r - ro) -1 e rzs dr (2-110)

r
0

Let r - r =x. Then0

P(zs) = 0O ° x R 0 5 dx

10

Thus,

-r zs  oR (a)
P Zs) e (2-11)

S
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where r(a) is the complete Gamma function. The form on the right-hand side of
I Eq. (2-111) is an excellent analytical representation of the deviatoric and hydrostatic

memory kernels in metals, soils and concrete.

2.3 The Concept of Intrinsic Time.

- 2.3.1 Strain Rate Indifference. Elasticity at Reversal Points.

There are two essential features of the mechanical response of metals at room
temperature and in a range of strain rates of about 10 to 10 sec "1 . which impose
useful constraints on the form of the intrinsic time z. In an idealized form (in the
sense that small deviations from this form are observed) these are:

(a) Strain rate indifference.

(b) Elastic behavior at reversal (unloading-reloading) points in a one-
dimensional stress-strain path as well as in other paths associated
with proportional straining histories.

Strain-rate Indifference. When the history of strain is given by the relation
-1 = #(t) let the stress response a be given by the function g(t). Elimination of the

parameter t leads to the relation

o C Gj(E) , (2-112)

where the response function G depends obviously on the history of strain 0(t). Note
that G need not be a singe-valued function. For instance in a uniaxial cyclic
loading G will be a multivalued function and will give the various levels of cyclic
stress at the same strain level c.

Definition. Rate indifference is the invariance of the function G under the
transformation t 4 F(t):f > 0. We note in passing that in elastic materials. G =G
for all 0.

Elasticity at Reversal Points. This material property can be discussed simply
and meaningfully in the context of strain rate indifference.
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In one dimension, the physical phenomenon is depicted in Figure 2.3 where a
uniaxial stress-strain test is shown in schematic form. The slope of the stress-strain
diagram at 0. the point of initiation of the loading, is E 0 . The stress-strain curve
need not contain a finite elastic region. The points A and B are reversal points.
What is meant by elasticity at reversal points is that the slope of the stress-strain
diagram of point A and B is E , i.e..

0

where reversal points (such as A and B) are defined by the property that at such
points the ratio. de/lIde . charges discontinuously from +1 to -1 or vice-versa.

In three dimensions the situation is similar. Let E.. (t) be a strain history and t
the time of occurrence of a reversal point. Denote by t the time that precedes t

. •by a vanishingly small time increment and t0 _ the time that succeeds t also by a0+ 0"

vanishingly small time increment. A point on the strain path in a nine-dimensional
strain space at time t is said to be a reversal point if:

0

dL.J = - diJ. ,(2-114)1 d ij I it IIdEijI Iit
0- 0+

where double bars denote the norm in the usual fashion. In three dimensions.
elasticity at reversal points implies that at such points

doij = C ijk de k , (2-115)

where C .. is the elasticity tensor. In the specific case where the material is
elastically isotropic Eq. (2-115) has the more particular form

dij = X 6 ijdekk + 21odeij (2-116).

or. the alternative uncoupled form
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Figure 2.3 Typical uniaxial stress-strain curve showing elastic response at
reversal points A and B.
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3 dkk - 3 Kodekk , (2-117)

dsij = 21o 0 .do , (2-118)

in the usual notation I and g being the stress and strain deviators respectively.

2.3.2The Intrinsic Time Scale.

The concept of the intrinsic time scale was developed on physical and
mathematical grounds which we proceed to summarize. In metals such as aluminum,
copper. high tensile steels. etc.. where plastic effects appear immediately upon loading,
the onset of yield is difficult to define. Such a concept may even be inappropriate
for such materials, except possibly as an approximation.

Classical theories, where the yield surface is used as an essential constitutive
element, lie outside the domain of functional theories, that are used in the
mathematical representation of the constitutive response of other materials. On the
other hand. at higher temperatures where metals evince strain rate effects, functional
theories are used for the representation of their mechanical behavior. One cannot but
conclude that "yield" may not be an essential element in the formulation of
constitutive equations for metals.

Thus within the domain of rate indifferent yet history dependent, where the
W stress response is a function of the strain path. the definition of the appropriate path,

seems to be a more fundamental physical task than the definition of yield point.
Thoughts along these lines, although less specific. can be found in the literature. In
1954, II'iushin 12.20] introduced such a path s. where ds was defined as the norm of
the increment of the strain tensor. i.e.

ds = Ildsll , (2-19)

as "useful" in describing plasticity phenomena. Pipkin and Rivlin [2.21] constructed
an elaborate mathematical theory using that path in 1964. The relation of their
theory to the observed behavior of metals, however, was not pursued.
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In 1971 Valanis [2.131 introduced the concept of endochronic plasticity by means
of the intrinsic time measure d5 such that

= dl-*dl , (2-120)

* where e is a fourth order material tensor.

One can see immediately that there are substantial conceptual differences
between the Ii'iushin concept and the endochronic theory. In the II'iushin appsuach
the path cannot accommodate material symmetries -- isotropy. orthotropy. etc. In the
endochronic theory. however, the material symmetries must be reflected in P. In
other words an isotropic material requires an isotropic tensor P. an orthotropic
material similarly requires that e be orthotropic and so on.

An intrinsic time scale z was then defined by the relation
dz - K

= f(.') (2-121)

* where in physical terms f(5) plays the role of a hardening function.

In one dimension (in a pure shear test say) Eq. (2-120). within an arbitrary
multiplicative constant, assumes the form

Sd5 = Id7I (2-122)

where 7 is the shear strain. One may use Eqs. (2-121) and (2-122) in conjunction
with Eq. (2-115) to predict theoretically the stress-strain response in shear to a strain
history including loading, unloading, and reloading. The predicted response is shown
schematically in Figure 2.4.

Some features of the theoretically predicted response are worth pointing out.
The slope at the unloading point A is not equal to E but to 2E - Et. where Et is
the tangent modulus at A. Upon reloading at B one obtains an open hysteresis loop.
because the slope of the reloading curve BC at B is less than the slope of unloading
curve AB at B. While these features are not in themselves disturbing and may be
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Figure 2.4 Typical response of model when d§ is defined according to
Eq. (2-120).
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qualitatively characteristic of granular materials, they certainly do not pertain to the
behavior of materials which unload elastically in the sense of Section 2.2. Evidently
the definition of intrinsic time given by Eq. (2-120) is not characteristic of metals.
We also point out that a definition of intrinsic time in terms of the stress tensor
such as

I d5 = dgej-dg (2-123)

leads to similar difficulties.

The problem of defining the intrinsic time was resolved in Ref. 12.221 where it
was demonstrated that the appropriate endochronic time measure is equal to an
increment in length of the plastic strain path in plastic strain space. In that which
follows, we give the analysis in detail.

2.3.3The Intrinsic Time in One Dimension.

We shall discuss the question in some detail in one dimension. The resolution
of the problem in three dimensions follows similar lines. The philosophical problem
that poses itself is the following: We have a (material) system that has no
cognizance of Newtonian time. Moreover, given a sequence of strain states the
system will "respond" in terms of a sequence of stress states. However. insofar as
the material response is concerned, the distance between two strain events cannot be
defined in terms of 1d71 by means of Eq. (2-120) and similarly the distance between
two stress events cannot be defined in terms of Idrl by means of Eq. (2-123). In
other words, neither the stress history (stress path) nor the strain history (strain
path) lie in their own space, in the sense that neither Eq. (2-120) nor Eq. (2-123)
are appropriate for the definition of intrinsic time. Since neither a path in (one
dimensional) strain- nor stress-space seems appropriate, we proceed to explore the
possibilities of a path in the co-joint stress-strain space (Tr7). Specifically in one
dimension let f stand for a strain component and g for a corresponding stress
component. We define the intrinsic time scale z by the relationship

dz2 = adf2 - 2pdgdf . 7dg2  (2-124)

Evidently z is a path in co-joint space (g.f) with the non-negative metric
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[_(2-125)

Of course since dz2 cannot be negative, the following inequalities must hold

S> 0. 7 > 0 (2-126)

2  a7 (2-127)

Let the functional relationship between g and f be

r2, df

g = (z - z')d-' dz (2-128)

.0

where ) is the appropriate kernel (2# if g is deviatoric. K if hydrostatic. as per
Eqs. (2-62) and (2-63).

It follows from Eq. (2-128) that

z . df

dg = )df + dz X'(z - z')- dz , (2-129)
"0 d z
10

where )o = (0) (the initial slope of the f-g diagram) and )'(z) = dX/dz. Elastic
response at reversal points demands that at such points

dg = X df. (2-130)O

It follows from Eq. (2-121) that at such points

dz = O. (2-131)

Thus. Eq. (2-130) is true whenever dz - 0 and vice-versa. When use of this
condition is made in Eq. (2-124) the following relation is obtained
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2jo X 2 0 (2-132)

However, X must be real and positive for all choices of a. P and 'Y. Hence. in
addition to Ineqs. (2-126) and (2-127). the following inequalities must hold

p2 k a7 (2-133)

p> 0 (2-134)

We now observe that lneqs. (2-127)and (2-133) can be satisfied simultaneously. if and
only if

9_.7. (2-135)

in which case. when use is made of Equation (2-135) in Equation (2-124). one finds
that,

dz 2 = a df 2 (2-136)

Note that the term in the bracket on the right-hand side of Eq. (2-136) is the
"plastic strain" increment df corresponding to the strain increment df. Thusp

dz = Fa'(")-d5 (2-137)

= Idf PI (2-138)

since, in general. a may depend on 5.

Conclusion:

On the basis of Eq. (2-124). the requirement of elastic response at reversal
points in one dimension leads to a definition of intrinsic time in terms of the plastic
strain.

23
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23A4 Gewalization to Three Dimensions.

We apply the analysis to initially isotropic compressible non-dilatant materials of
the type discussed in Section 2.2. The relevant constitutive equations are

- dg#(zs  z')r - dz " (2-139)

.0

and

o j - de dz (2-140)

0

Following the procedure adopted in the one-dimensional case we wrote the above
equations in incremental form whereupon

Oz
Is, deoq

d= 2#(O)d 2 * 2dz J (z s - z' z , dz" (2-141)

= K(0)de + dz K H  Z'de dz' (2-142)
H -z

0

If the material is to behave elastically at reversal points the following conditions must
apply:

dz s = dzH = 0 (2-143)

and #(0) and K(O) must be elastic shear and bulk modulus, respectively. However,
given the fact that

dzs = , dzH =k , (2-144a,b)

the condition (2-143) is satisfied if d5 = 0.
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The three-dimensional counterpart of Eq. (2-124) is

de = dj-O-dj - 2dl.ade + dj'gd2 (2-145)

In the case of isotropic materials, of interest here. the right-hand side of Eq. (2-145)
reduces to the form

d5 = (aldi-dS - 2pld2-dg + 71djedk)

(2-146)

( C2* - 2P2 d.de 72 o2 )

in the previous notation where the right-hand side of Eq. (2-146) is the addition of a
deviatoric and a hydrostatic term in brackets. Since the previous "one-dimensional" .
argument may apply either to the hydrostatic or deviatoric case, it follows readily that
elastic unloading in both hydrostatic and deviatoric histories demands that

d = ajIjd~jI 2j + a2 d62 (2-147)

where

dg

d-p - 2/o (2-148)

de p = de -d (2-149)
0

where 2ju and K are. respectively, the initial slope of the monotonic. shear stress --

(tensoriall shear (strain and the hydrostatic stress -- volumetric strain, constitutive
response curves, and a and a are functions of . A more detailed proof of the
above result is given below.

Since the deviatoric deformation is assumed to be independent of its hydrostatic
counterpart and vice-versa, both brackets in Eq. (2-146) must be positive semi-definite
i.e..
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a, dg'de - 2Pl d*d§ * 71 d*d - 0 (2-150a)

S2 d e 2 - 2P2 ded + .7 2 do2  0 (2-150b)

Because the hydrostatic response is one-dimensional it need not be discussed again as
it was dealt with previously. It remains, therefore, to consider the deviatoric
response, i.e.. Ineq. (2-150a). To this end let

d9-dj = Idell Ildall cosG (2-151)

where in a nine-dimensional vector space 0 is the angle between the incremental
vectors dj and dA.

Also for simplicity of notation let (djlI = ds and tid211 = de. Then Ineq. (2-150a)
becomes

a1 do2 - 2P, cosO dedi + 71ds2  0 (2-152)

for all positive ds and de. Obviously the discriminant of the quadratic on the left-
hand side of Eq. (2-152) cannot be positive in which case

417, - p1 cos 29 0 (2-153)

for all 8. The worst case is 0 = 0. in which case the necessary condition that
Ineq. (2-152) not be violated is

1 5171 (2-154)

which is precisely analogous to the one-dimensional relation (2-127).

Consider now a reversal point under deviatoric strain conditions. In this case
dz, = 0 and because of Eq. (2-141)

DS
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dg = 2s(0)d2  - (2-155a)

or

ds = 2s(O)de (2-155b)

Thus at reversal points we require that e 0. in view of Eq. (2-155a). Furthermore
the equality sign in Ineq. (2-152) must apply. Thus letting #O) = 0. the following
relation between #o and the constants ao. P, and 7, is obtained:

71,(2,p.)2 2p ,(2#s) +a, =0 .(2-156)

Thus,

p-71712# = P- F1 (2-157)0/o  71

l However, Ia must be real and positive. Thus the following inequalities must hold.

1~> 1 171 
(2-158a)

U
Pl > 0 (2-158b)

Inequalities (2-154) and (2-158a) can be satisfied simultaneously if and only if

1 = d171 (2-159)

Furthermore, in view of Eqs. (2-157) and (2-159)

2 = a272 (2-160)
P2 a2

K° = 2  (2-161)

Thus. Eqs. (2-147). (2-148) and (2-149) follow.
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3. THEORY OF INCOMPRESSIBLE PLASTIC ISOTROPIC SOLIDS

In this chapter. we consider the special form that the general theory presented in
Chapter 2 reduces to for solids which are plastically incompressible. i.e,. their
hydrostatic behavior is purely elastic. After a brief summary of the basic equations of
the general theory, some basic features of the governing equations for plastically
incompressible solids are discussed, after which the equations governing uniaxial
loading are developed and applied to cyclic and complex strain histories. Procedures
for determining the material functions p(z) and Fs(z) are given. To illustrate the
application and predictive capability of the theory in more than one dimension, two
multi-dimensional problems are considered, namely. a flat plate with two edge cracks
under uniformly applied tension and a cylindrical tube subjected to a homogeneous.
two-dimensional, non-proportional stress field. In both cases, comparisons between
predictions based on the theory and corresponding experimental data are given.
Finally, the version of the theory which exhibits a yield surface and was introduced
earlier in Chapter 2 is considered in greater detail, particularly for the case of
plastically incompressible solids.

3.1 Summary of Basic Equations for Compressible Plastic Solids.

The equations that describe the behavior of compressible plastic solids (without
dilatant capability) were given in the previous section. Here we recall these relations
for reference. They consist of (i) the shear and volumetric constitutive response
Eqs. (3-1) and (3-2) -- previously Eqs. (2-87) and (2-88):

Is dep

= pz s - Z'd dz (3-1)

0

JzH de p ~

a = H- dz' (3-2)

0
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subject to the constraints:

* p(o) = (o) = (3-3)

and z" Iz H
U p(z')dz , J (z')dz" < (3-4)

0 0

for all finite z and z H: (ii) the equations relating the increment in the plastic strain
tensor to the increment of the total strain tensor -- previously Eqs. (2-66a). (2-66b)
and (2-67a.b):

d p = dg - dt/2# 0 (3-5)

dep = de - da/K (3-6)

where # is the elastic shear modulus and K the elastic bulk modulus, both of which
need not be constant: (iii) the definition of intrinsic time for rate independent,

isotropic. materials -- previously Eq. (2-147) -- which we write in the form:

dz 2 = I1dePI 12 + k 2IdeP 12  (3-7)

where a1 was set equal to unity and a = k: and. (iv) the equations defining the
intrinsic time scales zs and zH -- previously Eqs. (2-57a.b):

dz = s ; d z = dF (3-8ab)s F dzH V H

The presence of k in Eq. (3-8b) insures that the hydrostatic response is independent
of the value of k.

Setting aI equal to unity merely defines the unit of intrinsic time, just as the
second" defines the unit of time in the Newtonian time scale.
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3.2 Equations for Incompressible Plastic Isotropic Solids.

3.2.1 General Considerations.

These solids are idealizations of reality in the sense that they are infinitely
resistant to hydrostatic plastic deformation. They provide a good representation of
the hydrostatic response of metals. Thus they are characterized by the property

SEP = 0 (3-9)

and

0 (ZH] =(3.10)

The integral on the right-hand side of Eq. (3-2). therefore, becomes indeterminate and
a is determined from the elastic hydrostatic response, which is given in Eq. (3-6). by
setting dep = 0. i.e..

do = Kode (3-11)

* Also the hydrostatic time scale z. becomes redundant and Eqs. (3-1) to (3-8) simpl;fy
considerably into the form of Eqs. (3-12) to (3-16):

z s  dep

2 E - z') 3 dz' (3-12)

0

do= K0 dE (3-13)

dep = de - - (3-14)

dz= 2/doP (3-15)

dzs = dz/F s  (3-16)
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Certain observations are in order. Equations (3-13) and (3-14) allow for non-
linear (albeit elastic) shear and/or hydrostatic response in that u and K may be

functions of the invariants of the elastic strain tensor. In metals, to which the above
equations are applied most frequently #s and K are considered constants. In the
case of elastic-plastic interaction /s and K may also depend on other quantities
associated with plastic deformation, the only constraint being that they should remain

* invariant with a rotation of the material frame of reference to satisfy the condition of
isotropy in the reference configuration.

Equation (3-16) allows for hardening and/or dependence of the shear response on
the hydrostatic stress. This is done simply by setting

F = F (a , z) . (3-17)

In the case of metals, the shear response is virtually independent of the current
hydrostatic stress particularly for small levels of the latter, so that with good accuracy
one can set

F = F (Z) (3-18)
SI

The above comments pertaining to metals can be summarized by the following
three realistic hypotheses which are generally adopted in theories of plasticity of
metals:

3 (i) Under moderate hydrostatic stress (of the order of the yield stress
in tension) the hydrostatic response of metals is elastic. Thus in
constitutive terms:

o = function of invariants of E.

In the literature. Eq. (3-13) is usually adopted where K° is a
constant.

(ii) A moderate hydrostatic stress does not affect the mechanical
response in shear. Thus:

F is not a function of a.
S
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(iii) Shearing at constant hydrostatic stress does not cause a change in
the hydrostatic strain. Again in constitutive terms, this is a
consequence of the fact that

dz =idePI (3-19)

so that the shear response is completely autonomous and
independent of the hydrostatic deformation.

In reality the above idealizations are only approximately true. For instance, it is
found that in the case of metals, the shear stress response is affected somewhat by
the presence of a compressive hydrostatic stress in the sense that the yield stress in
shear is raised []. In endochronic plasticity terms the implication is that the entire
monotonic shear stress-strain curve is "elevated". On the other hand, we have found
F to be a slowly varying function of z. Under monotonic loading conditions the
curvature and shape of the shear (or axial) stress-strain curve are almost entirely due
to the form of the kernel function p(z). and are affected to a lesser degree by the
hardening function F . The conclusion is that under monotonic loading conditions one

Smay. as a first approximation, consider F to be independent of z.
s

3.2.2An Illustrative Example: Pure Shear.U
In view of the above observation for metals, let us apply Eqs. (3-12) - (3-16) to

the case of monotonic loading in pure shear under a constant compressive stress.
Thus we consider the shear response of a metal in the presence of constant a and
set:

F = F s(a) (3-20)

In this case

0 d7P/2 0

dep = d7P/2 0 0 (3-21)

0 0 0.
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Thus. in view of Eq. (3-15). it follows that

d dz =f52 dP .(3-22)

Also the stress tensor is

- 0 '" 0

7r 0 0 (3-23)

-0 0 0.

so that, in view of Eq. (3-12) and (3-21). we find

z

1- dz dz" (3-24)

.0

* Hence, the use of Eq. (3-16) and Eq. (3-22) in Eq. (3-24) leads to the result:

p(zs - z')dz" (3-25)

.0

Let M(zs) be given by the expression:

Iz

M(zs) = p(z')dz" (3-26)

0

Then a simple change of variable in Eq. (3-25) gives

" =1 FM[Z) , (3-27)

where in view of Eqs. (3-16) and (3-22)
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Z (3-28)
SIm s s

By combining Eqs. (3-27) and (3-28). we find

m
2 IIY[pj (3-29)

Equation (3-29) illustrates the way in which the hydrostatic stress affects the shear
response through the fur-tion F . Specifically. in the particular case where r tends to
a constant % as 7 tends to innity. it follows from Eq. (3-29) that

2 J'F . M (3-30)

Equation (3-30) demonstrates how the functional form of F s(a) may be determined
from shear stress-strain tests which reveal the manner in which ' varies with a.

* Equation (3-29) provides an illustration of the way in which the endochronic
theory predicts the form of the monotonic shear stress-plastic strain curve. For
instance let F = 1 at some reference value of the hydrostatic stress. Then
Eq. (3-29) becomes

J= iP) (3-31)

The function M describes the form of the stress-strain curve in a general way which
does not pre-empt the existence or otherwise of a yield point. We note, in regard to
Eq. (3-26). that a yield point (or surface) will exist if p(z) contains a delta function.
as discussed earlier in Chapter 2 (see Eq. (2-101)). Thus while the theory does not
depend on the yield point or. more generally. on the yield surface for its existence it
can accommodate such material models without difficulty.

3.2.3 Cautionary Comments.

The above derivation leading to Eq. (3-31) is predicated on two conditions which
we wish to discuss. The first has already been discussed and has to do with taking
F to be independent of z. This is an approximation that has been used only for the
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sole purpose of obtaining a closed form solution to a specific example. F is a slowly
varying function but its role is essential and becomes more so under cyclic conditions
leading to large values of z. For instance cross-hardening. which is defined as
hardening in shear due to previously applied plastic tensile strain (or vice versa) is
due to the dependence of F on z.

The second condition has to do with material prehistory, i.e.. the strain history
1 to which the material has been subjected prior to its present state. If the material

prehistory is null then one is justified in setting z equal to zero at the initiation of
the deformation and the above analysis is valid. If not. the prehistory must be
known otherwise the integral on the right-hand side of Eq. (3-26) cannot be
evaluated. These questions will be addressed in greater detail later in Chapter 5.
where history-induced anisotropy is discussed.

3.2.4The Kernel Function p(z).

At this stage the reader may be wondering how one can determine the form of
M or, in a more basic sense the form of p(z). Again this question will be answered
in its generality in Section 3.3. However, to satisfy the reader's curiosity at this
stage we note, that when the above conditions do apply, Eq. (3-26) may be used to
determine the kernel function p(z) by simple differentiation. To this end we set
Zs = z when F = 1. Then it follows from Eq. (3-26) that

dM
W =T(3-32)

* In a monotonic pure shear experiment 1"(1p) is determined and known. Thus dr/d7p

is also a known function of 7P. say R(7, ). If we now make use of Eqs. (3-22) and
(3-27). it follows that

dM 1 R(7./p) (3-33)

dz 2

or

dM 1 R52 z)
dz 2
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Thus, upon use of Eq. (3-32):

U p~Pz) = '2A(12 z) (~4

3.2.5 Special Form of p(z): The Ramberg-Osgood Relation.

The stress-plastic strain curve of annealed metals (be it shear or axial) has been
observed (Ramberg-Osgood) to obey a power law which, though empirical, seems to
be valid over a substantial range of strain, the actual domain of plastic strain being a
function of the particular metal at hand. Thus with specific reference to the case of
shear, the reaction between r and ?p is of the form:

I 1 -a a (3-35)

where r and a are material constants. Moreover a is always less than unity (to
satisfy convexity) and equal to about 0.85 for most metals.

It is easy to demonstrate that Eq. (3-35) is a consequence of a special form of
p(zs). given in Chapter 2. obtained from Eq. (2-111) by setting r'0  0. This form is

I given by Eq. (3-26):

p-Zs) = PoZs ; o < a < 1 (3-36)

1 Thus, using Eqs. (3-26) to (3-28)

po 1-aM(zs) = (3-37)

and

()1-a/2 p0- Fa (7P) 1-a  
(3-38)

which is. of course, the Ramberg-Osgood relation where

= (s1a/2 0 F a (339)
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In the above derivation o was assumed constant and F was taken to be independents
of z which is a reasonable approximation over the range of validity of the Ramberg-
Osgood relation.

We point out that Eq. (3-35) cannot be true of metals which exhibit an ultimate
stress as P becomes large since

lir (7 p) I - a. (3-40)

7 p*s

The basic question of materials which exhibit an ultimate stress (or ultimate surface)
is taken up in the next subsection.

3.2.61Materials with Ultimate Stress.

The question of ultimate stress will be examined first in the context of a one-
dimensional stress response in the presence of constant hydrostatic stress. In the
case of metals the effect of the hydrostatic stress on the response is really a moot
one for moderate or, since this effect is weak. In any event, we shall set F -F(Z)
in which case

Z= Fs dz" (3-41)
zs F Fs (z')

0

With specific reference to shear response, the constitutive equation of interest is
Eq. (3-24). Under monotonic loading conditions equations (3-24) and (3-41) combine
to give

1z
S= f p(z s - z'jFs(z')dz' (3-42)

0

since now

F s(z) = Fs[z(zs)] = F(Zs) (3-43)

In view of Eq. (3-42) the existence of an ultimate stress depends upon whether or
not the integral on the right-hand side of Eq. (3-42) approaches a limit as zs  .
Here we shall consider hardening functions that have an upper bound in the sense
that

3-10



lim F 3 Fe (3-44)
Z 4 *

Although this is a mathematical limitation on F . it is one which is justified on the
basis of the physics of hardening in metals. Iardening is directly related to the
density of dislocations and to the effect of the activation energies of the motion of
these. Since the saturation density of dislocations is finite and the activation energies
associated with their motion are also finite the saturation value of the hardening
function must also be finite.

Regarding the kernel p(z ). we have already imposed the condition that p(z ) be
integrable for all finite zs to ensure boundedness of the stress response for inite
strains. i.e..

1 p(z; ) d z "  z < * (3-45)

0

Returning to Eq. (3-42). and in view of the fact that p(zs) is a positive integrable
function and F is positive and bounded from above. it follows that

Iz

'r J_ FJ p(z')dz" (3-46)

0

where the relation

- z')dz' f pz') " (3-47)

o o

was used. It follows, therefore, from Eq. (3-45) that the existence of an ultimate
stress r'. where

r.= l im r(Zs) (3-48)
Z .

S
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requires that

Si p(z)dz < . (3-49)

0

I Note that the form given by Eq. (3-46) does not satisfy this condition! However the
form of p given by Eq. (2-111) of Chapter 2 does. To wit, the form:

- s -a (3-50)
p =poe zs

where po. k0 and a are material functions, gives rise to an ultimate stress, since

p(z=)dz= po z (z') adz = p0  kl-a (3-51)
0 0

0 0

where r is the complete Gamma function. Thus in view of Eq. (3-46):

F p 1 (3-52)r= < 0 kl-a

0

and an ultimate stress exists. In fact one can show that

= F r(a) (3-53)

0

3.2.7 Constitutive Equation for Uniaxial Loading.

Under conditions of uniaxial loading, the stress and plastic strain tensors are
given by the following expressions:

0 0 0j 2. E
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where the condition of isotropy has been used to define the plastic strain field in
* Eq. (3-54b). Furthermore the condition of plastic incompressibility must be satisfied.

so that

1 2 (-5

The deviatoric stress and the deviatoric plastic strain tensors are. therefore, given by
the following expressions:

'2a

33

e I

-1 - (3-56)

a1
&3,

ep
ep = - 1 (3-57)

22

2J

Use of Eqs. (3-56) and (3-57) in Eq. (3-12) gives the following "uniaxial" constitutive
equation:

= Ezs - 1)P dz' (3-58)

0

where

E(z) = (3-59)

and dz and dz by virtue of Eqs. (3-15) and (3-16) are given by Eqs. (3-60) and
(3-61), respectively.
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Udz = F3 ide 1 (3-60)

dz5  dz (3-61)
- Fs (z)

Thus in the case of incompressible plastic solids, knowledge of the shear
response (kernel function p(z ) and hardening function Fs(z)) is sufficient to determine
the constitutive response uncer conditions of axial stress.

3.3 Uniaxial Constitutive Response to Complex Strain Histories.

3.3.1 Simple Unloading.

In classical plasticity theories the problem of unloading requires special attention.
Though more will be said about this later in the book, we* deal with the problem
briefly in this section so that the reader can appreciate the basic differences between
the endochronic theory without a yield surface, and classical plasticity which is
founded on the notion of a yield surface.

Let a yield surface be given by Eq. (3-62) in the six-dimensional stress space £
for fixed values of Z and k:

f( k) = 0 (3-62)

where E and k are internal structure parameters, i.e.. internal variables. The outward
normal aj to the yield surface is given by the expression:

ef

An increment in stress dg is said to constitute "loading". in the sense of producing a
plastic strain increment d~ p . if

g djZ > 0 (3-64)
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Conversely. the response is said to be elastic if

I j3• .0 (3-65)

In colloquial geometric language. loading takes place when the stress increment vector
points outwards relative to the yield surface, while unloading occurs when de points
inward. Neutral action -- but still elastic response -- occurs when dE is in the
tangent plane passing through the point of origin of dg.

**

In endochronic plasticity without a yield surface, such rules are unnecessary.
In the case of one dimension. which is of interest in this section. two possibilities
exist: either dep is positive or negative. Using Eq. (3-60) we find that in the
former case dEP/hz = +423 while in the latter case dP/dz = -T'T. However. dE1

and deP have te same sign. Thus we have the following conditions:

de > 0 dz- =

(3-66a,b)

de < 0
1 dz

To fix ideas consider the case of uniaxial loading in which the strain is increased

l from zero to a positive value E A and subsequently decreased continuously to its
current value E Simultaneously the plastic strain is increased from zero to a value

pA 1Vf and subsequently decreased to its current value EP. To keep the analysis simple
we set F = 1. so that z = z. Then, using Eq. (3-58) and Eqs. (3-66ab), we
obtain the following result.s

An exception is the perfectly plastic body with a stationary yield surface. In
this case neutral loading produces changes in the plastic strain tensor.

* * A version of the theory with a yield surface is admissible and will be discussed
later in Section 3.6.
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or = E(z - z')dz" - F2 E(z - z)dz" (3-67)

0 zA

At this point we recall Eqs. (3-26) and (3-59) whereby

az

E(z')dz= M(z) (3-68)
o2

.0

Use of Eq. (3-68) in Eq. (3-67) gives the following explicit relation for a

a= F12 {M(z) - 2M (z - zAJ (3-69)

At this juncture it is instructive to give the relation between f and z. This is
obtained simply by integrating Eqs. (3-66ab). In the range: 0 E1 < EpA

* dep/dz = + ve and e is given by the expression:

el= -z (3-70)

while in the range: e p< CpA: dEP/dz = - ve. and e1 is given by the expression

- pA_1 [z (3-71)1 _3

where

fA = ZA (3-72)

1 3

The range of interest here is the one governed by Eq. (3-71).

Thus using Eqs. (3-71) and (3-72) in Eq. (3-69) we find the following relation
between aI and E:
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or = f fMtf'e (eq 2M-7 beco (3-73)

More simply. if we set a T27 al, e T371 e then Eq. (3-73) becomes the
simple relation:

a = M (2<- _ C 3CAfP (3-74)

A plot of 3/2 e' versus z is shown in Figure 3.1 and correspondingly a plot of

"13 a, versus TJ 2 ep is shown in Figure 3.2 for the case in which

E
E(z) = ;a = 0.864 ; E =260 ksi (3-75)

Z0z

Experimental data by Halford and Morrow 13.11 are also shown for comparison.

Of particular interest is the case when a is so large that M(e ) is virtually
P-A -Asaturated and equal to M... In this case M(2e - f ) remains practically constant

during unloading and subsequent compression and almost equal to M.. Under these

conditions Eq. (3-74) becomes

or=Mo- 2M ( f . (3-76a)

Specifically if one regards point A as the new origin, and a* and ep are values
of stress and plastic strain measured from A. then

or= 2M [EP) (3-77)

i.e.. for a certain strain measured from A. the stress measured from A is equal to
twice the stress obtained during the monotonic testing for the same value of the
strain. This is an important feature of the theory.
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Figure 3.1. Plot of EP versus z.
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Figure 3.2. Loading- unloading stress- plastic strain curve.
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3.3.2 General Uniaxial Histories.

The most general uniaxial history consists of a set of unloadings and reloadings
ad infinitum. The time interval 10.z) consists of subintervals [O.z). **[Zr 1 .zr)
*°.Iz n.z). If the initial loading is tensile then

d =+ 1 "0 <dz , _z<z

and, in general, we can write

d -pdZ z < z ,r even

ez z<z, r odd
dz r-1 r

Thus. in a generic interval Zr1 _ z < Zr the following relation will always apply
= f ld _ _ (3-78)

-p- signum (AdP) (z - Zr)(378

Again, if F = I (no hardening), one uses Eqs. (3-58) and (3-78) to obtain the
following relation between a and the history of EP:

o = M(z) - 2M(z - z1) + 2M(z - z2) -

{ 2M(z - Zn), n odd (3-79)

- 2M(z - Zn), n even

3.3.3 Stress Response to Uniaxial Cyclic Histories.

in recent years, cyclic plasticity. which deals with the rate-independent inelastic
response of materials (metals) to cyclic stress or strain histories, has become an
important subject of research in applied mechanics and engineering design. Past
experimental work. theoretical studies, and engineering analysis are well documented in
the literature. For details see, typically. references [3.11 to (3.61.
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On the basis of existing experimental results, one concludes that generally. when
subjected to symmetric stress or strain cycles, annealed or soft materials will harden
and will tend to a stable response, while cold-worked or hard ntorials will soften.
When a stable response is reached. hysteresis loops in the stress-strain space become
stable. closed, and symmetric. This has led to the c6finition of a cyclic stress-strain
curve which is the locus of the tips of stable hysteresis loops.

m Also, in the presence of a history of unsymmetric stress cycles, the material

response involves a progressive increase of plastic strain, the direction of which is
determined by the algebraic sign of the mean stress. This phenomenon is called
cyclic "ratcheting". On the other hand. a history of symmetric cyclic straining
relative to a nonzero mean strain will result in "cyclic relaxation" toward zeo mean
stress. Both phenomena occur whether or not the material response has been
stabilized prior to these specific tests[3.71.

Under variable amplitude cycling, metals have a strong memory of their most
recent point of load reversal. As the number of cycles increases, effects of prior
plastic history tend to disappear. More precisely a material has a "fading" memory,
in terms of the intrinsic time scale z. of the history of plastic deformation that
preceded the cyclic history 13.81, as the latter progresses.

In this section we shall show that the endochronic theory predicts the above
response characteristics in a simple and consistent fashion. The theory will also be
validated in a broader sense by means of demonstrated agreement with the observed
cyclic response of (i) normalized mild steel to variable uniaxial strain amplitude
histories, and (ii) Grade 60 steel to a random strain history.U
Analysis.

We begin with Eq. (3-58). i.e..

a= JE(z - z) dz" (3-80)

0

A
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where in the remainder of this section we will substitute z for z and ' for z to
simplify the notation. Recall that

dz= ;d5=J ldEpI (3-81ab)
FSW 2 =

Before proceeding with the application of Eq. (3-80) to the histories of interest, we
1 make certain general observations which have particular application to metals such as

mild-steel.

There are basically two items of concern: (i) the prehistory, i.e.. the strain
history to which the specimen has been subjected prior to the uniaxial test and
(ii) the hardening function F (z). Item (i) is unknown and item (ii) can be
determined experimentally as discussed in Section 3.4.2. The histories of interest are:
the prehistory H . the cyclic strain history H1 (at constant amplitude and zero mean
strain), and the post-cyclic history H2 (following a saturated response). In general
the prehistory H is not known but this is one case where it can be treated
rigorously. Thus we write Eq. (3-80) in the form:

rzo K1  1 1e -
or E(z - ') dz" + E(z - z') aj-r dz" + E(z - z') dz'

1 o z zI

(3-82)

* where z = 0 is the temporal origin of the prehistory, zo is the "time" of initiation of
the uniaxial test and zI is the time of termination of the cyclic test at which steady-
state response has been observed. Of course ep(z) in the interval 0 z _ z . is not
known. Also not known is whether F has reached saturation at or before z. or not

.S0at all. For this reason we define an intrinsic time z* at which F Sbecomes essentially

constant, i.e..

Fs (z) = Fs(z*) (3-83)

for all z z*. Equation (3-83) can now be written in the form
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Z dep lz dep r d p1 1 1a1 = -z')T dz + E(z - z')!- dz' + E(z - z')- dz (3-84)
1o . 1o

We emphasize that F = constant = 1 (say) for z 2 z*.s

Consider now the first integral on the right-hand side of Eq. (3-84). and let

=d E(z -z ) dz' (3-85)

0

Evidently since F is monotonically increasingS

10<Fs(z*) E(z- z') dz' (3-86)

0

I But since Fs(Z*) = I and IdeP/dz' = 2/3. it follows that

0 °  J2 E(z - z') dz" (3-87)
0 3

0

or, recalling Eq. (3-68),

I °1< F[M(z) -M(z - z*)] (3-88)

It wil! be shown later in Section 3.4.1 that because M(z) is convex (see
Eq. (3-149)):

lim {M(z) -M(z - z*)} = 0 (3-89)
Z-

We presume that z I must be very large for the response to reach steady state and
since z > zI the contribution of I to aI can be ignored. In fact, Eq. (3-89) is the
mathematical statement of "fading memory" in the sense that the effect of the
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prehistory "fades" with time and asymptotically vanishes, thus having negligible effect
on the steady response.

n Thus. Eq. (3-84) becomes

01 E(z - z')T7 dz" + E(z z -) ' dz' (3-90)

zz
z, zI

where now

Moreover because of Eq. (3-91) the origin of the time scale can be shifted at will, so
that we may take z* = 0. in which event

rzlz
a= E(z - z')- " dz' + E(z - z')d-. " dz" (3-92)

0 z1

The time of initiation of the post-cyclic history is the time z above, which is always
assumed to be sufficiently large for a steady response to have been reached.

m Uniaxial Cyclic Strain History at Constant Amplitude.

Let us now consider the class of metals whose asymptotic stress response to
sustained cyclic strain histories at constant strain amplitude AE1 is a periodic stress
history with constant amplitude Aa1. In other words. there exists a z, and
characteristic values z of z such thatr

or +2f22 AE] = Ori(Zr) (3-93)
o [z.

for all zr > z.. Thus in a uniaxial test of this type, and for z > z.. the axial
plastic strain amplitude Aep is also constant and given by the following equation:

A1

eP = AE " 1  (3-94)
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where E is the elastic Young's modulus. This observation is central in calculating the
asymptotic stress response to cyclic strain histories at constant amplitude. In
consequence, we may regard the post-cyclic history in Eq. (3-92) as a cyclic history
with constant plastic strain amplitude and thus set z = z,. We now observe that
the first integral on the right-hand side of this equation has the same properties as
the integral I in Eq. (3-85). Thus following the same procedure we find

zoo d -[ z P 
3 - 5J~z -z) 1dz' < f2[ -z M (z _z.)]

0

Hence we utilize Eq. (3-89) and observe that the integral on the left-hand side of
Eq. (3-95) goes to zero as z tends to infinity. Thus for z >> z. (i.e.. in an
asymptotic sense)

a = E(z - z') T7 dz' (3-96)

UZn

with the important qualification that the history in the above equation is one in which
the plastic strain amplitude is constant. Again since F = 1 we may reset the origin
of integration to zero so that s

l

a1  - E(z - z') T dz' (3-97)

l im z40
0

where AeP is constant and given by Eq. (3-94).
1

The following relation is obtained by virtue of Eqs. (3-78) and (3-97)
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= ,r i M E(z - z') dz"

(3-98)

+ (-1)n E(z -z')dz

z
n

where z 0.

Application to Normalized Mild Steel.

It was found that in the case of normalized mild steel, the appropriate form of
the kernel E(z) is:

E(z) = E° z - a  (3-99)

The manner in which E and a were determined will be discussed in that which
follows. In view of Eq. f3-99). Eq. (3-98) becomes

= lir 3 - z -  2 (-1)i(z - z (3-100)
n

Use of Eq. (3-78) together with the fact that z = " leads to the following expression
for z:

z = (2nAE e , (3-101)

where the minus sign is used for n odd and the plus sign for n even. In particular.

Z = (2n - 1) (3-102)

At this point we use Eqs. (3-100). (3-101) and (3-102) to find the following closed
form solution for a
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[a/2 E1a

where:

x - (3-104)
Aep1

and

1-a n1aFn(a,x) = (2n x) + 2Z'(-1)'(2n - 2i + 1 x)1a (3-105)
i=1

where. as above, the minus sign applies to n odd and the plus sign to n even.

The algebraic value AuI of the peak stress is found by setting x =1 for n odd
or x = -1 for n even in Eq. (3-105), and letting n - *. Thus:

o1 = ,, a/2 E 01-a FE(a) (3-106)1 3J 1-0  1A

where

F.(a) = lir Fn (a) (3-107)

It can be shown 13.81 that F (a) tends to a constant F.(a) as n tends to infinity.
the constant depending on the value of a. Eq. (3-106) is the theoretical form of the
.cyclic" stress-plastic strain curve which is basically a plot of the asymptotic peak
stress Aa1 versus the amplitude of plastic strain Ac.

At this point we test the theory vis-A-vis experimental data on normalized mild
steel 13.7]. In reference [3.71. a set of stable uniaxial hysteresis loops corresponding
to various constant strain amplitudes was presented in the uniaxial stress-strain space.
These data appear in Figure 3.3 where triangles denote experimental points. A propos
of the ensuing theoretical predictions we note that the geometric shape of the loops is
given by Eq. (3-103). whereas the peak stresses are given by Eq. (3-106). We also
note that there are only two undetermined parameters in these equations: a and E
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The foom of Eq. (3-106) is corroborated by means of a plot of the experimental
values of log Aoal versus log UP. This plot gives rise to a straight line as shown in
Figure 3.4 and thereby determines the constants a and E which were found to be
0.864 and 107.6 MPa (15.61 ksi). respectively.

These values were then used in Eq. (3-103) to give the shape of the stable
hysteresis loops for large n (say n > 25). Agreement between theory and experiment

I is shown in Figure 3.3 for all experimental amplitudes Ae . One observed that the

agreement between theory and experiment is remarkable.

Regarding these results, we will note that two constants are sufficient to
determine the cyclic stress-(plastic) strain response as well as the hysteretic cyclic
behavior of normalized mild steel. It is also pertinent to mention that the analytical
expressions involved, Eqs. (3-103) and (3-106). are closed-form solutions derived from
a general constitutive equation pertaining to three-dimensional histories. Also of
importance is that the prediction of unloading and reloading behavior did not
necessitate special memory or loading-unloading rules but was dealt with routinely, as
part of the total experimental history of interest. Specifically. the celebrated
Bauschinger effect is predicted quantitatively and correctly from one and the same
constitutive equation.

*I We make, in passing. an observation of historical interest.. Equation (3-106)
agrees with the following empirical relationship proposed by Landgraf 13.9J for steels.
i.e.

Aa- ,,p)1-a(3-108)

where 1-a ranges from 0.12 to 0.17. In the case of normalized mild steel, 1-
a = 0.136.

3.3.4Variable Uniaxial Strain Amplitudes.

To extend the experimentally verified domain of validity of the theory, we test it
under conditions of variable uniaxial strain amplitude histories, These histories fall
into two distinct types. The first type is one where the specimen is subjected to a
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constant strain amplitude history (until a periodic response is attained) which is then
followed by another (different) type of history. The material that we will consider is
normalized mild steel and the experiments were reported in Ref. 13.7]. The second
type is a random uniaxial strain history [3.10] and the material is Grade 60 steel.

Histories of the First Type.

The appropriate equation for this case is Eq. (3-92) where the first integral on
the right-hand side is used for the cyclic history and the second for the post-cyclic
history Recall that F = 1 in both integrals. Three histories are treated and these
are shown in FiguresS 3.5. 3.6 and 3.7. The corresponding experimental results are
also shown by triangles. Equation (3-92) was integrated numerically using precisely
the same values of the constants for normalized mild steel as found previously. The
theoretical predictions are shown in the figures by the solid lines. The agreement
between theory and experiment is again remarkable.

History of the Second Type.

This is a random uniaxial strain history and is shown in Figure 3.8. The
experimental results reported by Dafalias and Popov in Ref. [3.10] are also shown by
means of triangles, squares and circles. Here we faced the difficulty that if a
prehistory existed it could not be treated rigorously, hence we assumed that it was
null. Also we set F = 1 because the method used to calculated it gave that valueS

within experimental error. (See Eq. (3-183).) Equation (3-79) was then used to
predict the stress response analytically (since the plastic strain could be calculated
directly from the experimental data) and is shown in Figure 3.8 by a continuous black
line. The material parameters E and a were determined by using the procedure in

- Section 3.4. (See Eq. (3-136) and Figure 3.9). We found that F = 1.
E = 264.2 MPa and a = 0.882. Considering the complexity of the history the
agreement between theory and experiment, shown in Figure 3.8, is indeed again close.

It is worthy of note that predicted values of the slopes of the stress-strain curve
at the onset of loading and reloading are always equal to Young's modulus
(2.06 x 10' MPaV). However. in Reference[3.10] those slopes were assigned a smaller
value (1.64 x 10 MPa) than the Young's modulus to account for "softening". This
has not been necessary in the present case.

I

I I
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3.3.5 Cyclic Relaxation.

As a final example we consider the case where the uniaxial plastic strain is
increased monotonically to a value e+. and is followed by a cyclic uniaxial strain
history with amplitude Ae about a mean value E.

0

To calculate the stress response to this specific class of histories we use
Eq. (3-79). The cyclic strain history is shown in Figure 3.10. With reference to this
figure. we make the following definitions:

eP = eP + Up (3-109)

+ 0

-P =P h p (3-110)

The value z. of z at the ith reversal, is found from Eq. (3-81b). Thus

K 2 [p+(2i - 1) Ap] , i = 1, 2, . (3-111)

After n reversals have been completed. the value of z at the current strain EP is

Z 2 J12[n Up+ i e p IE P (3-112)

where

E- -0 (3-113)

and the minus and plus signs correspond to n odd and even. respectively. The stress
response after n reversals is found upon using Eqs. (3-58). (3-111) and (3-112).

- Specifically, we find that

r= 123)/ 1 Ea (AEP) I ,Fn(axo,X) (3-114)
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Figure 3.10. Uniaxial cyclic relaxation of normalized mild steel.
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where

m1 -
Fn(ax 0 ,x) =(2n x. x)1-

n1-
2 (-1)' (2n- 2i * 1 X) 1 a (3-115)

1=1

and

0 epXo -p (3-116)

x = e (3-117)

If n is odd. x varies from I to -1. while if n is even. x varies from -1 to 1. It is x
which allows cyclic relaxation to take place even though the material is stable, since
f(5) = 1. The results are shown in Figure 3.10 where the same material constants.
found previously, were used. We notice that as n becomes very large. the effect of
x in Eq. (3-114) disappears as a result of the relation lijr F (a.x .x) = F_(a.x).
lTe hysteresis loops then become stable and symmetric with respect to e_ and are of
exactly the same form as those with zero mean uniaxial strain.

3.4 Method of Determination of the Material Functions p(z) and F54).

1 As may be seen from Eqs. (3-12) through (3-16) two elastic constants. # and
K . and the two material functions. p(z) and Fs(z). completely determine the0 .

constitutive response of plastically incompressible metals, within the assumptions
already discussed in the previous sections. Of these, 2#s is the initial slope of a
monotonic pure shear stress-(tensorial) strain curve anod K is the elastic bulk
modulus. The determination of the functions p(z) and F (z) is more complex. Just
as in viscoelasticity, where there is no unique experimental technique for determining
the (relaxation or creep) kernel in a constitutive functional, so it is in the endochronic
theory. However a standard test does exist for this purpose although other
equivalent" tests may prove experimentally suitable and theoretically satisfactory.
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The most convenient test (in the sense of being easy to perform experimentally)
is the uniaxial cyclic shear-strain test under constant strain amplitude conditions. In
the course of such a test with constant strain amplitude e . the material will
normally harden (though materials with an initial state of large prestrain may soften)
and the stress o1 corresponding to the maximum strain AeI will increase with the
number of cycles until the material reaches a steady state. When this happens, the
hysteresis loops generated during the remainder of the test will essentially retrace
themselves and an asymptotic steady cyclic hysteresis loop will prevail.

The above test. although easy to perform experimentally does not lend itself
easily to rigorous analysis. A similar test. which however may be more difficult to
perform experimentally, but not too much so. given the presently available
experimental equipment. is the constant plastic strain test. This test is shown
schematically in Figure 3.11.

Note that once steady state conditions have been reached, the constant plastic
strain amplitude test performed at ep  = A/2 = OA = OB (in the notation ofi1max I
Figure 3.11) is equivalent to the constant strain amplitude test at e -, Pax = he I
OA" = 0B. Thus under steady state conditions the two tests lead to identical
experimental results, in terms of the steady hysteresis loops such as ADBC.

In this section we shall use the constant plastic strain amplitude test to discuss
the determination of the function p(z) because this test does in fact lend itself to
rigorous theoretical treatment. Specifically. it will be shown that the steady-state
hysteresis loop determines the function p(z).

3.4.1 The Kernel Function p(z).

Let us begin with the analytical foundations for the determination of the function
p(z). To this end we recall Eq. (3-12). Then, under uniaxial stress conditions and
in view of the assumption of plastic incompressibility, we can write

dz = 3 1dei , (3-118)

where ep is the axial plastic strain corresponding to the axial stress a,. However
because the unit of intrinsic time is arbitrary (and therefore adjustable) and strictly
for the purposes of illustrating how p and F are determined from experiment we set

s
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d5 = Id..i (3-119)

U which is tantamount to setting

d= 2~ (de 11 (3-120)

We recall Eq. (3-80):

z d
o = E(z - z') T- dz" (3-121)

.0

where

, 2E(z) = 3p(z) (3-122)

The function F increases monotonically for continuously hardening materials until
Sit reaches a constant value F leading to steady state conditions. A constant Fstrahsacntn au msrax

is necessary for a steady state response as has been shown analytically. For the
Upurposes of analysis we set F = I for z z. Under these conditions the

history of ep versus z is shown im igure 3.12. for the case of a cyclic test from z
to z followed continuously by a monotonic test from z on z in the notation of thisf n nfigure.

* We note that in such a test and given that F = 1. the value of dep/dz is
either +1 or -1 depending on whether JP is inc
write Eq. (3-121) in the form

rzo 0zde z
I = fE(z - z ) dz dz' J E(z - z')d--- dz" (3-123)

o z
0

or

,Z de P
= R(z) + E(z - z') d- dz' (3-124)

z
0
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where

R(z) = E(z - z) - dz' (3-125)

0

l IThe function R(z) enjoys the important property

li mR(z) = 0 , (3-126)
ZM

as will be shown later in this section.

The integral on the right-hand side of Eq.(3-124) may now be evaluated exactly
so that

o(z) = R(z) + M z - zo) - 2M z - z1) + 2M(z - z2) ...

+ " 2M z- Zn) (3-127)

(n even)

where
U z

M(z) = E(z')dz" (3-128)

The stress response to this type of history is shown schematically in Figure 3.11.

We note for reference that

Zn = (n - 2jf - 'o (3-129)

With this in mind. one may show by straightforward analysis, using Eq. (3-127) that
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a (A) 2M z - n) + R (3-130)

where

R = 2R(z) + Mz -zo) -2Mz - z0 + + M z -z o) A (3-131)

K and

lim R(z) = 0 (3-132)
Z-+W

as will be shown presently. Thus in a steady-state cyclic test (z+w), it follows fro,
Eq. (3-130) that

2M(z - Zn) = a(z) + o(z + A) (3-133)

The meaning of u(z) and a(z + A) is shown in Figure 3.13. In view of the geometry
of this figure it follows that if we set

z - z J dEp  = x (3-134)

zn

* than

2M(x) = a(x) + o(x + A) (3-135)

Upon recalling the definition of M(x) from Eq. (3-128). we infer from Eq. (3-135) that

2E(x) = da(x) , do (x+A) (3-136)dx dx

The geometric meaning of this equation is shown in Figure 3.13.

Thus the axj3i cyclic strain test at constant plastic strain amplitude (or total
strain amplitude, for that matter) provides a means of direct determination of the
memory kernel E(z) (and thus p(z)) - once steady state conditions have been reached.
Of course the cyclic shear strain test will do just as well.
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Shown in Figure 3.11 is the steady state hysteresis loop AB'BA and its
extension BC generated by the plastic strain path from z I to z. as shown in
Figure 3.12. According to Eq. (3-136) the kernel function Ex- is determined by the
average of the slopes of the steady state hysteresis loop at B' and C. Since the
maximum range of x is A, E(x) is determined for values of its argument x between
zero and A.

Periodicity and Symmetry Characteristics of the Steady Response.

Of interest is the fact that if we set z zn in Eq. (3-133) we obtain the
important result

G(zn) = - o0z + A) (3-137)

or. in the notation of Figure 3.12

oA = -B (3-138)

i.e.. steady state conditions prevail and the maximum value of the stress in tension is
equal to that in compression. The more general periodicity condition

or n(X) = on+2(x) (3-139)

expressed in our present notation, can also be shown to hold as follows. In the limit
of infinitely large z and as a result of Eqs. (3-127) and (3-129) one finds that

on(z) = M[x + (n - 1)A + -2M[(n - 1)A + x

(3-140)

+ 2M[(n - 2) A + x] - ...- 2M(x + A) + 2M(x)

Thus,

a(X) n+2 - n(x) = Rn,n+2 (3-141)
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where

Rnn2=- 2{M[(nA + x) + A] - M(nA + x)}

I! (3-142)

+ M [x + nA , - M [ x + nA + * - A]j3 
1 2

- As we shall show presently

lim Rn,n+2 = 0 (3-143)

n-N

and hence. Eq. (3-139) is valid.

Thus in the limit of large n the theory does indeed predict observed periodic
steady state hysteresis loops with the attendant symmetry properties pertaining to
tension and compression.

Convexity of M(z): Limit Properties of Series (3-127) and Related Series.

The function M(z) is convex in the sense that

M(z + a) - M(z) < aE(z) (3-144)

for all positive finite a and all positive z. As is easily shown upon use of
m Eq. (3-128). this is a consequence of the fact that E(z). which is the slope of M(z).

has the. property

E(z + a) < E(z) (3-145)

Specifically, it follows from the definition of M(z) that

Z+r

M(z + a) - M(z) = E(z')dz" (3-146)

z

Howeverfz +a
E(z')dz" < aE(z) (3-147)

z
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as a result of Eq. (3-145). Hence condition (3-144) follows. The function E(z) also1 enjoys the property

I im E(z) = 0 (3-148)

I It now follows from Ineq. (3-144) that

Iim {M(z + a) - M(z)} - 0 (3-149)
Z-4u

Conditions (3-145) to (3-149) will prove extremely useful in the subsequent
analysis. For instance Eq. (3-133) is predicated on the validity of Eq. (3-132). To
prove this relation we first show that

Iim R(z) = 0 (3-150)
Z- M

In view of Eq. (3-125)

R(z) < [E(z - z')f(z)I dz (3-151)

or

0
R(z) Fs(zo) E(z - z')dz" (3-152)

0

since I deP/dz' I = I and Fs(z) is a monotonically increasing function up to z - zo
and Fs(z) = Fs(Zo): z zo. Thus. in view of Eq. (3-152)

R(z) _ F5(zo){M(z) - M(z - zo)} (3-153)

where use was made of Eq. (3-128). We now set z - z = y and note that y tends
to infinity as z tends to infinity. It follows from Eq. (3-153) that
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R(z) Fr()My a - M(Y)) (3-154)

Hence. in view of Eq. (3-149)

l im R(z) = 0 (3-155)

If we now write R in the form

Rz2R. {M(z - zo + A) [(z- zJ. + - )

(3-156)

-{M~z - Z. +)- M(z - )

it follows from Eqs. (3-149) and (3-155) that

lim R = 0 (3-157)

Thus Eq. (3-133) has been validated.

A similar argument shows that Eq. (3-143) is also true and hence the periodicity
condition (3-139). which establishes the existence of a steady (periodic) response for

1 infinitely large z. has also been proved.

We pointed out earlier in this section that the constant cyclic strain amplitude
test and the constant plastic strain amplitude test are equivalent. In the steady-state,
either of these tests is a suitable (standard) test for the determination of the kernel
function p(z).

3.4.2The Hardening Function F5(z).

Here we give a rigorous method for determining the material function F (5) from
experimental data when F (') is a slowly varying function in a sense to be defined
subsequently. Consider. specifically .the uniaxial test with a loading-unloading history.
The test is illustrated schematically in Figure 3.14 where the axial stress 01 is plotted
versus the axial strain e. The stress a is given by the relation
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Figure 3.14 Determination of FS(z).
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o E(z -z')3z dz' (3-158)

0

where

2E(z) = 3p(z) (3-159)

d5 = IdEPI (3-160)

dz = k(3-161)

We wish to calculate the stress at points B and C where AE is an increment,
not necessarily infinitesimal, in the plastic strain. Then in view of Eqs. (3-158).
(3-160) and (3-161).

a1B = E(zB - z')F:(z-)dz" (3-162)

0

where zB is the value of z at point B and

Fs(z) = Fs(5(z)) (3-163)

The stress a1 at C is calculated using again Eqs. (3-158). (3-160). (3-161).
Thus

=.Az 8 -' dC dO1C E(z B  , B  z " d dz"= - dz

0

rz AZB

,,. E(zB * Az8  -' (3-164)
zB
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where use was made of the relation zC  - zB + Az Note that in the interval
o < z' < z . deP/dz' = +1. whereas in the interval z B < z < zC , dE"/dz = -1.

It follows that

p B
ac = { z Az - z') Fs(z )dz "

0 

(3-165)

(ZB+ AzB

- jEzB AzB - z')F(z')dz"

zB

In regard to the second term on the right-hand side of Eq. (3-164). note that in view

of the mean value theorem we can write
I :!

SZB+AzB

E + Az e - z')F5 (z')dz " = F*zB)M(AzB ) (3-166)E ZB B B z)M'

B

where the function M(z) is defined by the integral (see Eq. (3-128)).iz  z
M(z) = E(z - z')dz = E(z')dz " (3-167)

0 0

a n d zB < z B  < z C .

Let us now evaluate the first term on the right-hand side of Eq. (3-165). First
we note that

35
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(ZB

(ZB + E Z B z ' - z'F:(z')dz'

0

,Bz B , 
-

= Ez B  AzB - z')Fs(z)dz" (3-168)
0

Z B +Az B
E-z B + AzB - z')Fs(z')dz"

ZB

or

JZB + Azb - z)Fs(z')dz" = a' - FzB)M('zB) , (3-169)

o

where the physical meaning of oB. is illustrated in Figure 3.14. In view of
l Eqs. (3-164). (3-165), and (3-169)

a1C a 1B- 2Fs(zB)M(AzB (3-170)

* Hence:

F:ZBJ - 21Bz 1 (3-171)

We remark that this is an exact result irrespective of the magnitude of Az A
generalization of Eq. (3-153) applicable to any reversal point is given below without
proof, which we leave to the reader.

• - i°IB"- °1 1
Fs(ze)-= 2U(AZe) (3-172)

We wish to use the preceding equation for the experimental determination of F (zJ.
If we let AzB be infinitesimal and if Fs(z) is a slowly varying function (see discussion
below) then
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IF: (z.) -F: (z.)  (3-173

M(Az) - M(IAePj/F(zB)) (3-174)

* U 1 Ba' B , (3-175)

so that Eq. (3-172) becomes

F;(ZB) = 0 B - 1C

2M, la I 
3 16

Furthermore since F*(z) = F (5B). Eq. (3-176) determines the value of the function
Fs(") at the point . i.e.. at 5 = 5B. The error associated with these
approximations will be discussed below.

3 To solve for F*(zB) it is necessary to know the functional form of M(z). We
shall demonstrate the procedure for determining of the form of the function M(z) in
the vicinity of z = 0. using the experimental data shown in Figure 3.8. observed by
Dafalias and Popov 13.101 on grade 60 steel. In Figure 3.15 we show a plot. shown
in open circles, of log Ijob - a1CI versus log JAePj for point I of Figure 3.8. It shows

I a linear relation between the respective quantities. Such a relation is typical of
reversal points.

On the basis of this finding. M(z) must be a power function of its argument of
the form

M(z) = M (3-177)

in the vicinity of z = 0. This conclusion follows directly from Eq. (3-176). which
leads to the logarithmic relation

log(lb -Cic) log(20J log[M(j-eo)/F (3-177a)
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Figure 3.15 Plot of log I a b a cI versus Iog!~ePI for Grade 60 steel.
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where FB is identically equal to FB = F (ZB). Evidently, if the relation between
log(olb -O1c) and loglAEfl is linesar. M must be a power function of IAEPI/FB.
Furthermore. since the value of the latter lies in the vicinity of zero. M is thereby
determined for values of its argument in the vicinity of zero.

In consequence, and as a result of Eq. (3-167). E(z) is also a power function.
Specifically

E(z)= E0 z (3-178)

where a = I - P and E0 = (I - a)M o .

Discussion of Solution of Equation (3-176).

We discuss the solution of Eq. (3-176) in the vicinity of z = o when the
material function E(z) is given by the relation E(z) = E /za.. In this case. following
Eq. (3-172). (in the vicinity of z = o)

M(z) - 0 z 1-a (3-179)

Using this expression. Eq. (3-176) may be solved explicitly for F*(zB) to give

FB =O'1B- = I 111/a (3-180)

More specifically using Eq. (3-177)

a011 "B 1C1 a 1F5= ( 2~E] -a (3-181)-

The logarithmic form of the above equation. given below.

i"2Eo  1

logloa- Oc I = log 11 aF BJ (1 - oglo1 ,Il (3-182)
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is useful in determining both the parameter a and the function of FsB to within a

multiplicative constant. In effect, a plot of log jalB - OC versus logjAE gives a-

straight line with slope (1 - a) and intercept log (2E0/1 - a) at -AJP = 1. Such a

plot is shown in Figure 3.15 for various reversal points in the case of Grade 60 steel.

Although not shown, there is a great deal of scatter for JAeJI < 7 x 10- 4 . However.

in the range 7 x 10' 4 < Jae < 10-. the experimental points lie consistently close to

a straight line with a slope P = 0.18. The fact that all points lie virtually on the

same line implies that F is a constant in the range of z covered by the experiment.

We finally make a crucial observation. If the same value of AEP is used at all
reversal points chosen for the determination of F , then the denominator in
Eq. (3-181) is a constant. Thus if A 1 is the stress drop at any reversal point
following the construction in Figure 3.14, then in view of Eq. (3-181)

Fs (z) = F 0so{O 1 (z)}l/a , (3-183)

where F is a normalization constant to be chosen at one's convenience. Equation
(3-183) gives a simple and powerful result for determining the function Fs(z).

Error Associated with Equation (3-176).

Here we give an estimate of the error associated with Eq. (3-176) when M(z) is
given by Eq. (3-177). The calculation is lengthy but straightforward. Basically the
relation

F*(z') = F;B F*B Z - zB) + O((z' - z)J 2  (3-184)

in the range z8 < z" < zB + AzB and the integral form of Eq. (3-8a) wherein

Iz -
= F(Z')dz (3-185)

0 3-5
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are used in Eq. (3-166) where

dF(Z)
i F3B - Z (3-186)zz

The resulting relation for the error e is

F: (1- 10'B1 - 71Id (3-187)

2M
I Fs J

where

- a)AF AFsB2

2(2 - a)F B B] *sJ (3-188)Z~~~ sB ) s

Thus e is at most of O(AF*B/F*B).

3.5 Comparison Between Theory and Experiment for Multi-Dimensional Cases.

3.5.1 A Copper Plate with Two Edge Cracks.

The Experiment.

The truly predictive capability of the theory was put to the test by means of an
experiment which was described in Refs. [3.11] and [3.12]. but which we shall discuss
here, because of its importance in establishing the theory as a predictive instrument in
the mechanical response of metals at room temperature.

The experiment consisted of subjecting a rectangular copper plate with two
symmetrically placed edge cracks to reversed loading in a manner shown in
Figure 3.16. The plate was machined from 2.54 cm thick OFHC copper
(8.12 cm x 9.14 cm). Basically two tests were performed. In Test I strain gauges
were attached to the specimen in the manner shown in Figure(3.17a) and the strain
e (in the direction of the applied load) was measured at the indicated stations along
tle notch line. The applied (tensile) stress was increased from zero to 36.8 MPa. at
which point strain measurements were made. The stress was then
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Figure 3.16. Description of copper plate used in experiments.

3-58



02:MA- 13-OOCLI12

01.03Notch

-7.62

(a) Horizontally oriented gages (b) Vertically oriented gages.

Figure 3.17. Location of strain gages.
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decreased to zero where strains at this value of applied stress were also measured.
At this point a compressive stress was applied, increasing from zero to a value of
36.8 MPa. Strain measurements were also made at this value of the applied stress.
In Test 2 the strain gauges were mounted in the manner shown in Figure(3.17b). In
this case the applied (tensile) stress was increased from zero to 23 MPa. where strain
measurements were made. The applied stress was then decreased to zero. At this
point a compressive stress was applied, increasing from zero to a value of 23 MPa
where strain measurements were again made. The applied compressive stress was
then decreased to zero, whereupon a tensile stress was applied, increasing from zero
to a value of 23 MPa where again strain measurements were made. Details of the
experimental procedure are given in Refs. 13.11] and 13.12].

Analysis.

Strains at the points of measurement were calculated using Eq. (3-12) to
Eq. (3-16) in conjunction with a finite element program which we proceed to outline
very briefly.

Equations (3-12) to (3-16) lend themselves to a differential relation between
stress and strain. Specifically in the case where the infinitely large value p(O) is
approximated by a suitably large value, as is done in this analysis, one may
differentiate Eq. (3-12) to obtain the following differential form of the constitutive
equation:

d2 = 2p(O)de p + 2b(z)dz (3-189)

Equation (3-189). in conjunction with Eqs. (3-12) to (3-14) then gives the following
equations, suitable for a finite element program:

h b(z)
= 2p de . dz (3-190)

de = 3K deKK + 2^ de+ 20 dz (3-191)

where

# 1 +(3-192)
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Consider a material domain which is suitably divided into m elements (microdomains)
giving rise to n nodes. The deformation field is thus described by 3n displacements
and the stress field by 3n forces. The strain field in each element is assumed
uniform, and so is the stress field.

Equation (3-191) may be written for any one particular element in vector form
as follows:

d{o} = [k]d{e} + 2A {h} dz (3-193)p(0)

Following Ref. [3.131. the statically equivalent forces d{p} at the nodes of the element
are related to d{Z} by the relation:

d{p} = (b]T d { o }  (3-194)

while the strains d{e} in the element are related to the displacements d{u} at the
nodes of the element by the relation:

d{E} = [bld{u} (3-195)

It follows from Eqs. (3-193) to (3-195) that:

d{p} = IK]A d{u} + H, dz (3-196)

where

[KiA = [bIT [k]lb] (3-197)

and

[MIA 2 [b]T{h} (3-198)

Here. the suffix A specifies a particular microdomain. In the case at hand the
microdomains are triangles.

If we now sum Eq. (3-196) over all elements, the following global relation is
obtained:

d{p} = [K] d{q} + [Hjd{z} (3-199)
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where {p} are the loads applied to the nodes of the material domain. {q} are the
corresponding displacements at the nodes, and d{z} is the vector of intrinsic time
increments, each pertaining to the appropriate microdomain in a three-dimensional
domain. [K] has dimensions (3n x 3n) but [H] has dimensions (3n x m). Thus dz
plays the role of a plasticity induced body force. In a two-dimensional domain of
interest here. [K] has dimensions (2n x 2n) but [H] has dimensions (2n x m).

Solution of Eq. (3-1991.

The difficulty in solving Eq. (3-199) lies in the fact that at each step in the
incremental process the vector d{z} is not known. Equation (3-199) is thus solved
through iteration by initially setting d{Z}n = d{z}_ n. Equation (3-199)is now solved
in principle by simple inversion of the matrix [K], or in practice. by solving the set of
linear simultaneous equations in d{q}. giving the first approximation to d{q}. Thus
d{u} are now known and thus d{} and hence de. may now be found using
Eq. (3-195). Also d{o} and hence dl may be found using Eq. (3-193). Thus d is
now known in view of Eq. (3-194) and thus the "new" dz for each microdomain may
be calculated using Eq. (3-15) and (3-14). The "new" values of d{z} are then used
in Eq. (3-199) to determine the second approximation to d{q} by solving Eq. (3-199) 4

anew. The procedure is continued until two successive approximations to d{q} differ
by an acceptable margin. Exceptions are points of unloading (in the sense of the
externally applied stress) when the initial values of d{z} are taken to be equal to
zero.

Comparison Between Theory and Experiment.

A comparison between the measured and calculated values of the strains is given
in Figures 3.18 to 3.23. Given the complexity of the experiment and of the inherent
constitutive response and the fact that the material functions p(z) and f(') were
measured by an independent experiment in a round rod. the agreement between theory
and experiment is truly remarkable.

3.5.2 A Brass Tube Subjected to a Homogeneous Two-Dimensional, Non-
Proportional Stress Field. The Ohashi Experiments.
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The Experiment.

In a series of studies. Ohashi [3.14-3.161 and his collaborators investigated the1 stress response of brass to non-proportional strain paths in the deviatoric strain
space 1. In Figure 3.19 we illustrate a group of experiments which are performed
along strain paths in the (2e12/ 4f3.e ,) space. The generic history consists of
extending a thin tube in the axial direction until a certain value of ell is reached.
With e held constant at this value the tube was then twisted until a certain value
of the Ls1 ear strain e was reached. With e12 held constant at this value the tube
was then either extered further, or the existing axial strain was reduced to zero.

The stress state along these paths was expressed in terms of a path length P.
where:

dt = d de (3-200)

Precise measurements showed that the stress response has a strong dependence on
the history of the previous plastic deformation. Specifically. in reference to the paths
D-G. it was found that there is a decrease of the equivalent stress (EE)1/2 with
respect to the length . brought about by a rapid decrease of the axial stress while
the tube was twisting under constant axial strain.

Ohashi and his associates regarded this phenomenon as a manifestation of some
sort of inherent instability. In our terminology this is stress relaxation with respect
to the intrinsic time 5. It means that elastoplastic materials, during specific strain
histories, evince stress relaxation with respect to 5 in very much the same fashion as

* viscoelastic materials do with respect to Newtonian time.

We shall show that the constitutive equation of the functional type proposed in
Section 2.2.4 is appropriate for describing material behavior in the presence of complex
strain paths that cause strong history effects. The phenomenon of fading memory
discussed in previous references (see for instance, Ref. [2.191) is evident in Figure 3.20
where the axial stress response curves converge asymptotically to a single curve which
is independent of the intervening torsional strain history. Quantitatively the degree of
fading memory is determined by the rate of decay of the kernel function p(z).
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Figure 3.19. Map of experimental strain paths.
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Figure 3.20 Axial stress response corresponding to the strain path indicated.
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Because the appropriate cyclic experiment for the determination of the functions
p(z) and f(5) was not performed by Ohashi. these functions were determined from the

1 data by an iterative, laborious process which we will not describe here. Suffice it to
say that the functions so found are of the form:

f = 11 + co  0 (3-201)

-kz0
p(z) = Po a (3-202)

where

PO = 15 k_.2_ a =0.70, k =180

I-

c = 90 , d =0.26

Discussion of the Comparison Between Theory and Experiment.

(a) Paths, D, E. F, and G.

Figures 3.20 and 3.21 show, respectively, how the axial stress a and the shear
stress T3 S 2 vary with the path length ?- following the first corner of a strain path.

1 Points signify experimental data while solid lines depict calculated results based upon
the endochronic model. Excellent representation of the material response is
demonstrated. The axial stress relaxation following shearing at constant axial strain
is predicted with remarkable accuracy.

(b) Paths H. I. K and L.

Figures 3.22 and 3.23 show relations corresponding to the paths H through L.
In these figures, the points correspond to Ohashi's data and the solid lines to
calculated results based on the endochronic model. In Figure 3.22 the calculated
stresses are in conformity with experimental observations. In Figure 3.23
corresponding relations are shown for the shear stress response. Agreement is again
good except that the calculated stresses relax faster than their experimentally observed
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counterparts at low values of the stresses. At higher stresses the agreement between
observed and calculated values is again excellent. We suspect that the discrepancies
are due to the presence of initial shear strain. However. this hypothesis needs to be
investigated further.

3.6 Endochronic Plasticity with a Yield Surface.

3.6.1 General Considerations.

In Chapter 2 we dealt with the case of constitutive equations which have their
basis in irreversible thermodynamics with a finite number of internal variables.
Specifically. insofar as the deviatoric response is concerned, the resulting constitutive
relation was given by Eq. (2-80). It was pointed out at the end of that section that
this equation is, in fact. a special case of the more general equation:

'Zs de

= p(zs - z') -' dz , (3-203)

0

p where p is of the form

P = S6(zs) + Pl(zs) (3-204)

and pl(O) is finite. This result was derived rigorously in Ref. [2.14]. where it was
shown that Eq. (3-203) gives rise to a theory of plasticity with a yield surface. In
addition it gives, as corollary, the constitutive equation that governs the motion of the
center of the yield surface or. in other words, it gives a law for the evolution of the
back stress. In this section we shall derive these results beginning with Eq. (2-80)
which is repeated below for completeness:

d~ep  P
z s  dgp

Ss o  z I pl(z-z')s- dz" (3-205)
SJ

.0

Let us also recall the pertinent relations that apply to plastically incompressible solids:
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d5 de'~ (3-206)

dz = d5/Fs( ) (3-207)

At this point let the tensor denote the integral on the right-hand side of
AL Eq. (3-205). i.e.. let

Zs d eP

= Pz - - dz" (3-208)

0

Then Eq. (3-205) becomes simply

- = s o W5- Fs , (3-209)

where use was made of Eq. (3-207). Upon taking norms of both sides of
i Eq. (3-208) and using Eq. (3-206). it follows that:

Ilk-iAl = so Fs() (3-210)

The geometric interpretation of Eq. (3-209) in the five-dimensional space of Z is a
hypersphere with center t and radius s F • the equation itself is the algebraico s

statement of isotropic-cum-kinematic hardening of classicai plasticity. In the three-
dimensional space of the principal components of Z this equation is the algebraic
representation of a cylinder normal to the i-plane i.e., with an axis of symmetry in
the direction of the hydrostatic axis. In this regard the evolution of A with plastic
deformation represents kinematic hardening. in general non-linear, while the growth of
F with plastic deformation, through 5. represents isotropic hardening. A geometric
ilfustration of Eq. (3-209) in the i-plane is given in Figure 3.24. Note that the
increment in the plastic strain vector is normal to the yield surface, in view of
Eq. (3-209).

Thus. endochronic plasticity contains classical Von Mises
plasticity as a special case when the kernel function p
contains a delta-function in the sense of Eq. (3-204).
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Figure 3.24 A geometric illustration of Eq. (3-209) in the ir-plane.
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However, there is more to these developments. One of the most difficult and
basically unsolved problems of classical plasticity is the determination of the evolution
equation that governs the back stress, i.e.. the migration of the center of the yield
surface in stress space, particularly since every material has its own characteristic
evolution equation. Prager's rule of kinematic hardening, given by the expression

dg = C de p. (3-211)

* where C is a constant, gives a linear form of kinematic hardening which is not
characteristic of metals and is at best a very crude approximation of experimentally
observed behavior. In fact Mroz's theory of multiple yield surfaces 13.171 is a
commendable effort to generalize Prager's linear kinematic hardening theory and is
tantamount to a piece-wise linear kinematic hardening. It can be readily demonstrated
by using Eq. (3-69) that this is achieved by approximating p, by a piece-wise
constant function of z . However there is no particular virtue in this approximation
and the (thermodynamic) representation of p1 by a series of positive exponential terms
is. numerically, a much better alternative as we show later in the book.

We close this sub-section with a cautionary comment. The curvature of the
stress-strain curve in simple tension, say. is due mainly to kinematic hardening. i.e.,
the form of the kernel p (Zs). Attempts to model the curvature by manipulating the
isotropic hardening function may give good results in simple loading but will fail badly
when unloading or other, more complex. paths are involved.

3.6.2 The Question of Unloading.

In endochronic plasticity the question of unloading reduces to the determination
of d5 given a strain increment de or a stress increment ds. We shall show how this
is done in the following analysis.

We recall Eq. (3-209) which we write in the form

dc-- (3 -212)
=sF

0 S
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In view of Eq. (3-206) it follows from Eq. (3-212). or Eq. (3-209). that.

I - " - = s2 F2  
(3-213)

Thus, during a plastic deformation process. Eq. (3-213) must always be satisfied.

A simple differentiation of Eq. (3-213) leads to the expression:

(2 I- 2) * dk - (s, - A) • dA = s2 FdF (3-214)

At this point we use Eq. (3-209) to substitute for s - A in the second term on the
right-hand side of Eq. (3-214). and thus obtain

de p
2

I - *) * dg = so Fs d 5 * dA + s 2 F dF5  (3-215)

However A is given by Eq. (3-208). Thus. upon differentiating this equation, we find

dR = p,(0)deP + h 9 (3-216)F S

where use was made of Eq. (3-207), and the relations:

S s  deP

b = ( - z') z-. dz" (3-217)

0

- dp, (3-218)

S

A straightforward analysis using of Eqs. (3-215) and (3-216) leads to the expression:
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dt = H d5 (3-219)
s s0 F S d= d

where

H = pl(O) + s F + - (3-220)
nS S F2

0 S

Note that H depends on the history of ep up to the present time 5 but not on d5.
We shall prove that H is always positive if F _ 0.S

Discussion of Eq. (3-219).

Given a deviatoric stress increment d, from a point k on the yield surface, we
observe that, relative to the yield surface, either dk is pointing outwards, is tangent
to, or pointing inward. Thus

V.

(i-9) e d- -0 , (3-221)

-ve

depending on the respective circumstance. However dr, cannot be negative. Thus.
presuming that H > 0 (this will be shown later in this Section). eitherU!

)- d2 > 0 (3-222)

and d5 is positive and is given by Eq. (3-219) or

(2 - ) - d s 0 (3-223)

in which case d5 = 0. and the deformation is purely elastic.

This result again agrees with classical plasticity in the sense that the above
rules also apply. A further result moreover is of interest. If Eq. (3-209) is used in
Ineq. (3-222). it follows that whenever ds gives rise to a plastic strain increment deP:
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de p

n s0 Fs  " dt > 0 (3-224)I~ ~~ dS E > 325

or

dgep- d2> 0(3-225)

since s . F and d5 are all positive. Thus the theory satisfies the Drucker stability
postulate [J.18] provided that H > 0.

Recapitulation.

(i) The necessary and sufficient conditions for plastic deformation are:

1i1 -21 = so Fs (3-226)

and

(t - g) * d2 > 0 (3-227)

I
(ii) The necessary and sufficient conditions for elastic deformation are:

lie - l< so Fs (3-228)

or

lIg - MI = so Fs (3-229a)

(2 - a) • d2 0 (3-229b)

Calculation of dep for prescribed de.

Let Eqs. (3-226) and (3-227) be satisfied. Then d" is found from Eq. (3-219).
i.e..

C- 2) •*d
d5F H (3-230)

S
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The increment in plastic strain may now be found upon use of Eq. (3-212) or upon
use of Eqs. (3-230) and (3-212) whereby

op 1 - x (2 - a) * ds (3-231)

where the symbol x represents an outer product. In indicial notation:

dW 1 Sd (3-232)
'j ~F S) 2 H (s. - a.. ) NFLi - 'k jsk..

In fact Eq. (3-232) may be written in terms of a tangent modulus Ci i.e..

de?. = C? ds (3-233)

where
C? 1 a. - (3-234)

sjkP - F 2 H( (0 F a Sk)2 akH.)

I
Note that CP.k" is positive semi-definite and symmetric. Thus given any arbitrary
tensor {i. suct that 11Ci,11 0. then

C? ijk [ s i j - a i j ) " Ci j ] 2 (3-235)
ijkP..~k (s F S) 2H '- J

It then follows that

CF > 0 (3-236),.ik- Cij~kP-

This result will be central in proving uniqueness of the initial value and boundary
value problems later in Section 5.5.

Calculation of deP for Prescribed de.

In finite element codes the driving input is generally the increment in strain dt.
It is important. therefore, to give a means of calculating de p given dj. Again let
conditions (3-226) and (3-227) be satisfied. Then d5' is given by Eq. (3-230).
However, now we may use the relation
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d = 2p1d 2  js(d2 e - deP] (3-237)

which may be substituted into Eq. (3-230) to give the following relation:

- d5 = H s - 1) - (de- deP) (3-238)

At this point we use Eq. (3-212). substitute for dtp in Eq. (3-238) and rearrange
terms to obtain the following equation for d5:

d5= soFs 2s ° 2e o " (2-eg" d2 (3-239)

0 s(H +2 0) (-)

Iq
Thus. given de, d5 may be calculated from the above expression.

Recapitulation

We now have the following necessary and sufficient conditions for the occurence
of plastic or elastic deformation, given the deviatoric strain increment tensor de:

(i) Necessary and sufficient conditions for plastic deformation:

S AI- s 0 F S(3-240)

and

[e- )•de > 0 (3-241)

(ii) Necessary and sufficient conditions for elastic deformation:

1i1 - All < soF  (3-242)

or
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I11 - = sF (3-243a)

3.6.5 The Sign of H.

It is clear from Eq. (3-220) that the sign of H depends. in part, on the sign of
F' i.e.. dFs/d5. It is also clear from Eq. (3-210) that if F' > 0 the yield surface

S S S
continues to expand and the material (plastically incompressible in this case)
undergoes isotropic hardening. in addition to kinematic hardening which is inherent in
the kernel p(z ). On the other hand, if F' < 0. isotropic softening takes place, and
if F" = 0. hardening is only of kinematic character since the radius of the yield

S
surface is constant in this case.

With the above in mind we first examine the magnitude of the last term on the
right-hand side of Eq. (3-220) and show that

-2 > P (zs) - p(O) (3-244)
os 

The proof is given below.

It follows from Eqs. (3-209). (3-217). and (3-220) that

- 2  P1 (z 5 -IN I dz' (3-245)
so s S 0

We note the following: Because F is monotonically increasing, F5(z) F slmax  Also.

d2s s max

Pi(z- z') d dz' <

s de p () de p  z'

IP( zS -z')l d5 dz- dz"

0
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rzs de~(p d2e(S
F max JlP,'(zd - z5- d dz' (3-246)

0

But

d2
p  d2

p

- 1 (3-247)

since dtP/d is a unit tensor. In view of the above and Eq. (3-245). it follows that

2  IPi (zs - z')l dz' (3-248)
s o

where use was made of Eq. (3-247) to observe thatTz d2P d2

1 - z .dz" (3-249)

0

However pi(zs) is a negative monotonically increasing function. Thus

-p(z - z')Idz I 1Zpzs - z-)dz"1 (3-250)

O o

Equations (3-248) and (3-250) now combine to give the following result:

rz
- IPj(Z5 - z')dz' (3-251)

sF2
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However,

" j i*zS - z')dz' I(z 5s) - P1 (0) (3-252)

0

M and hence

F2  Pi -Zs) - (0) (3-253)

os

Thus at worst (I-j).h/s F cannot attain a value smaller than pl(zs) - pl(O).
Making use of this result in 1q. (3-220) we find that

H I P1(zS) 0 s(3-254)

Hence H is always positive for finite values of z so long as F' 0.S S

3.6.6 Determination of the Constant s0 and the Kernel Pl(Z 8 ).

As discussed previously, the form of p(zs) given in Eq. (3-204) and repeated
below:

m p(z) = s06(z5 ) + p1 (z5) (3-255)

is really a degenerate form of the function p(zs) whose actual form has been found
invariably to be of the type

-k r
p(zs) a Re r s (3-256)

z rs

where one term in the summed series usually suffices, and 0 < a < 1. k 0.

R > 0. We remind the reader that p(O) - and that in the vicinity of z = 6.

p(zs) ~ aPO (3-257)
z
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L1

Suppose that we want to approximate p(zs) by a series of finite exponential
terms in the sense that

n -rZs
n r zs

p(z)- A re (3-258)
r=1

where n is finite. We realize immediately that such a representation cannot be valid
near, or at the origin where E A < c. in disagreement with the value of p(z ) at
z = 0. However we can approximate p(zs) as close to the origin as we wish by
taking a sufficiently large number of exponential termsor by using the approach
described in Chapter 7. This may be proved rigorously, in view of Eq. (3-256) but
we omit the proof since it is not of direct consequence in what follows. Thus let us
say that the function pl(zs). where

dfn -P r Zs
Sp1 z) d f A (3-259)

PIN) r

is very close to p(zs) in the range 6 z < a but differs substantially from p(zs) in
the range 0 _ z < 6, where 6 is a suitably small number (say 10.6. or the smallest

n measurable strain).

Thus we may write

l P(zs) = e(z s ) + P1 (zs) (3-260)

where the "error" E(z ) is essentially zero outside the range 0 z < 6. Consider
now the following expression for the deviatoric stress tensor Z:

z s  dep

S = p(z - z') --- dz' (3-261)
fo

Note that in view of Eq. (3-260). Eq. (3-261) becomes:

= - z')": dz" 0 f (zs - z') dz (3-262)
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However. because of the fact that e(Zs) vanishes outside the interval 0 < z < 6.
1 Eq. (3-262) becomes:

S= zs - z')- z dz" + e(zs - z" - dz" (3-263)

but the interval 16 1 is sufficiently small to render the tangent dP/d5 to the plastic
strain path constant in this interval. Thus

- dz " = F-ZT) d- f z - z dz'

z -6 -6
dp SS

= FsZs)"- JE(z')dz" (3-264)
• 0

To evaluate the right-hand side of Eq. (3-264) we note that in the interval 5 and in
view of Eq. (3-257) and (3-259)

e[Zs)=- - pl(Zs 
(3-265)

S

Thus:

5 •PO 61-a.

e(z')dz : - a p (6) 6  (3-266)

0

But at z = 6. p1(6) = p(6) by assumption, and therefore
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• Po ,1-a Po a 51-a l
e (z')dz" -. 1.-...... - 1 0 o (3-267)

1 I- a aa0
0

In view. therefore of Eqs. (3-263). (3-264) and (3-267). it follows that

PzZs de p  dgeP

= - z dz (3-268)

0

where

S 0 a a Po 61 (3-269)

Thus the problem of the representation of the kernel p(z) by the approximate form
(3-255) is now solved. But the reader must not fail to note that in the
representation of pl(zs) given by Eq. (3-258). the constants A and Pr are functions
of 6.
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4. THEORY OF COMPRESSIBLE PLASTIC ISOTROPIC SOLIDS

4.1 Introduction.

The application of endochronic plasticity to metals, discussed in the preceding
chapter. is facilitated by three assumptions which are quite realistic:

(1) Under moderate hydrostatic stress, the hydrostatic response is
elastic.

(2) A constant moderate hydrostatic stress does not affect the
mechanical response in shear.

(3) Shearing at constant hydrostatic stress does not induce a change in
the hydrostatic strain.

In the case of compressible plastic solids, such as soils, plain concrete and rock
for example. the above assumptions are not realistic.

In regard to item (1) above, the typical hydrostatic behavior of concrete. rock
and porous rock in compression is illustrated in Figure 4.1. The pressure-volumetric
strain curve is initially convex, becoming concave and asymptotically elastic. Upon
unloading at A to a point B a significant amount of plastic strain, e B' results. There
is obviously a great deal of hardening taking place. which affects dramatically the
subsequent loading-unloading-reloading behavior as illustrate in the figure. While, for
metals, hardening. in general, is the result of multiplication of dislocations, in concrete
and soils it is very much a function of compaction. In both cases however the

rrsources of hardening are the resistance coefficients "b r' and in this particular instance.
br (see Eq. (2-50b). Thus while for metals one achieves hardening by letting br be

C.
an increasing function of z, in concrete and soils to account for the compaction effect
on the hydrostatic, we set A

b r = br F HG (4-1)

where F H is a monotonically increasing function of E.

* Of the order of the yield stress in tension.
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Figure 4.2 Typical shear response of plain concrete, soil and porous rock as a

function of hydrostatic compression.
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In reference to item (2). the shear response depends strongly upon the existing
1 level of hydrostatic stress. This effect is illustrated schematically in Figure 4.2 where

the shear stress is plotted versus the shear strain under monotonic loading conditions
and at various levels of constant hydrostatic stress. To account for this effect, the
deviatoric resistance coefficients. br have all been set proportional to a function F of
the existing hydrostatic stress. Tius

br = b Fs (4-2)1 10 S~o

according to Eq. (2-50a).

It is important to note. however, that in the case of cyclic histories where the
value z becomes large, then F can also be expected to depend on z. The physical
reason for this is that. in the case of soils, for example, the resistance coefficients
depend on the particle arrangement in the material. Since the particle arrangement
varies directly with the cumulative plastic strain, represented by z1. F will also
depend on z. Thus in general

F s = F (o.z) (4-3)

However for histories that are not repetitive, the dependence on z can be ignored as a
first approximation.

In regard to item 3. the mechanical responses of concrete, soil and porous rock
M show strong shear-hydrostatic interaction in that shearing at constant hydrostatic

stress produces a significant change in the hydrostatic strain and vice versa, As will
be shown subsequently. endochronic plasticity accounts for this effect through the
intrinsic time and specifically by virtue of the coupling constant k which appears in
Eq. (3.1.7). note that in materials which are plastically incompressible. dep = 0. In
such materials shear-hydrostatic interaction is absent.

The constitutive equations that pertain to the mechanical behavior of
compressible plastic solids, such as soils.. porous rock and concrete, were derived in
Chapter 2 and summarized at the beginning of Chapter 3. They are given, again.
here for reference.

Fdz p

= P( Zs - Z' -dz" (4-4)
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a {Z 4 u-- dz' (4-5)
(ZH z

0

p (o) = +(0) = - (4-6)

= d2 - ds/2# (4-7)

P= de - do/K (4-8)

dz 2  j IdgpH 2 + k 2Idep 12  (4-9)

dzs = dz/F s , dzH = dz/kFH (4-10a,b)

For soil, porous rock and concrete, F can be represented quite accurately over a
moderately wide range of a by the linear expression:

F = c + 0,or . (4-11)

where co and ° denote positive material constants. In addition, the function F H is
very closely given for these materials by an exponential function of the form

FH = FH eP ep  (4-12)

where, for convenience, we may normalize FH to unity at EP = 0. without loss of
generality, and therefore take FH = 1. "

We note at this point that the above equations have the property that the
application of shear stress produces a change in the plastic volumetric strain, i.e..
there is shear-volumetric coupling, however, as we shall show below, the shear-
volumetric coupling is limited to densification. i.e.. eP > 0. To show this, let us
invert Eq. (4-5). that is. we express J in terms of the history of o to obtain
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P= Jz - d dz" (4-13)

0

where the kernel L is related to by the integral equation

{ ,zH - z') L dz" = H(zH) (4-14)IzH '
0

and H(z) denotes the Heaviside step function. If we let Z. =z at the termination
of the pure hydrostatic compression phase (o = o). then in view of Eq. (4-13) we
can write

1

H = da ' (4-15)

.0

since do/dzH = 0 for zH > ZH.

The application of shear will lead to a change in z. by virtue of Eq. (4-9). and
therefore a change in z because of Eq. (4-10b). As a result, the integral on the
right-hand side of Eq. r4-15) will change due to shearing and. hence, so will f .
Consequently. in the presence of hydrostatic stress. dz is given by Eq. (4-9) which
depends upon the value of k. Finally. we note that. since the integral on the right-
hand side of Eq. (4-15) is positive. Eq. (4-15) always predicts compaction (EP > 0)
during shearing at fixed hydrostatic stress.

To account for dilatancy, the hydrostatic constitutive Eq. (4-5) must be

modified. This has been done in a recent work by Valanis and Peters [4.1] in which
the hydrostatic and deviatoric evolution equations are coupled. Two different modes
of coupling have given rise to two different hydrostatic constitutive equations, which
are given below without derivation:

o {ZH - P dz rzH - z) dz" (4-16)

0 '0S
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and

rZH '- He rzH
S - J ZH - Z) dz " J (Z H - z') j * dz " (4-17)

0 0

where r(zH) is termed the "dilatancy kernel".

From some initial applications to unsaturated soils, it appears that Eq. (4-17) is
preferable. This subject will not be pursued in the present volume as it will be taken
up in greater detail in a forthcoming second volume on Endochronic Plasticity by the
authors. We add parenthetically that Eq. (4-17) was reported by Valanis in Ref.14.2].

4.2 Hydrostatic Behavior.

In the preceding section, some of the general features of the hydrostatic behavior
of compressible plastic solids, such as soils, concrete and porous rock, were described.
In this section. several simple hydrostatic models which follow from the basic
Eqs. (4-5). (4-6). (4-8). (4-9) and (4-10b) and which exhibit the basic features
depicted in Figure 4.1 are developed. In addition, analytical methods are given for
determining O(z ) and FH(eP) from experimental data. For further details on the
representation ofhydrostatic stress, see Ref. [4.3].

4.2.1 Some Simple Hydrostatic Models.

Consider, first of all, the case in which the hydrostatic stress a lies on the
concave portion of the virgin hydrostat (see Figure 4.3). In this instance, the kernel
O(ZH) can be represented by a Dirac delta-function, i.e.,

#(ZH) = 0o 5 (ZH) (4-18)

where #o is a positive constant. Substitution of this expression into Eq. (4-5) leads
to the result

o (4-19)
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Figure 4.3 a versus ~Pfor virgin hydrostatic compression, showing various
regions of response.
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In a purely hydrostatic deformation, Eq. (4-9) gives the relation

dz kidePI , (4-20)

which for monotonic loading reduces to the expression

dz = k dep  (4-21)

Upon combining Eqs. (4-10b). (4-21). (4-19) and (4-12). we obtain the equation

0 0 (4-22)

which is exactly the form adopted in the critical state theory of soils [4.41. Note
that # 0 is defined by the intersection of the extrapolated concave portion of the virgin
hydrostat with the a-axis, as shown in Figure 4.3.

Another way of modeling the hydrostatic response is to represent O(z) by a
single exponential term. i.e.,

0 = e -az (4-23)

If one uses Eqs. (4-5). (4-21). (4-23) and (4-12). the following relation for a is
obtained:

ZH o0 a(zH - Z') ~ p ( )
a = oe "d"(4-24)

0

The integral on the right-hand side of Eq. (4-24) can be evaluated approximately.
since the function O(zH) is close to a delta function. In effect, we can write

a = Ii-1 11 - e (4-25)

where

..(. -Pi) i (4-6)
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in view of Eqs. (4-21) and (4-10b). Equations (4-25) and (4-26) give the observed
convexity of the hydrostatic stress-strain curve at small values of plastic hydrostatic
strain, and concavity for large values of JP. The reason for this is that at small
values of eP. and in view of Eq. (4-26). we can write:

ZH " CP (4-27)

and

Pe 1,(4-28)

so that Eq. (4-25) becomes

(1 G. 0 L -aeJ (4-29)

which exhibits convexity. For large values of J. Eq. (4-26) gives the asymptotic
value

z (4-30)ZH~

Thus, in view of Eq. (4-25). we have"
! - e-/)ePEP  (4-31)
a

i.e.. at large eP the hydrostatic response becomes exponential and therefore concave.

4.2.2 Determination of the Functions O(zH) and F,(eP) .

Consider the case of monotonic hydrostatic compression from the natural
unstrained state. In this case, we have from Eqs. (4-9) and (4-10b)

dzH = dEP/F H  (4-32)

ZH
so that Eq. (4-5) takes the form/

a = NZH - z")FH(eP-)dz' (4-33)

0
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This equation, together with Eq. (4-8). completely defines the monotonic hydrostatic
response.

In addition to the bulk modulus. K. there are two material functions that are
necessary to define the hydrostatic behavior: the kernel O(zH) and the hardening
function FH(EP).

Consider first the hardening function F H' which is discussed most clearly with
reference to a typical hydrostatic response curve for plain concrete, as depicted in
Fig. 4.4. here, the stress a is shown as a function of the plastic volumetric strain eP

for the case of monotonic compression from the virgin state. The curve ON
represents the response for FH = 1. In the initial stage of loading (0 _ EP . OA).
FH is essentially linear. In the stage OA < eP <- OB, it is basically hyperbolic. In
the final stage (cP > 08). a * * as J + J. since there is a limiting material
compaction beyond which the material cannot be compacted further, no matter how
high a stress o is applied. Thus. it is necessary that F H satisfy the following
limiting condition:

I im FH = (4-34)

ep~ep
C

However. the exponential form of F given in Eq. (4-12) is satisfactory over a
substantial range of JP (say 0.05). Therefore the determination of F H reduces to the
determination of the constant p. Furthermore, the fact that the integral of the kernel
OH saturates while F H is still in the linear range, suggests that for eP < OA

FH = e ~ 1 pe + (eP 2  (4-35)

Thus. if our attention is restricted to the initial stage of response
(0 ep _ OA). we can write

FH - I + PEP . (4-36)

where p is a positive constant. The linear representation of F inherent in Eq. (4-36)
affords an explicit method for determining the value of p and tLe kernel O(ZH), as we
will show below.

With F given by Eq. (4-36). and for monotonic hydrostatic compression, it
follows from qs. (4-9) and (4-10b) that.
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Figure 4.4 Pressure versus plastic volumetric strain for virgin hydrostatic

compression.
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Figure 4.5 General form of the relationship between a o* and z H'
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dzH = deP/( + pP) (4-37)

Hence

= (PH , (4-38)

so that

FH = ePzH (4-39)

To determine O(zH) we resort to its (approximate) representation by a finite
Dirichlet series as given below

Z: B H (4-40)
O ) =r=1

where the constants Br and Pr are positive and finite.

U iTherefore. upon substituting from Eqs. (4-39) and (4-40) into Eq. (4-33). we
find

orHBe Pr(zH- ~'z (4-41)

r

0

which can be integrated to give

re - p H e (Pr+P)zH 1 (4-42)
rr

Upon defining a stress a* such that

01' - o4 (4-43)F - H 1 + PC p
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Eq. (4-42) can be rewritten in the following form:

o E [1 - r)ZH] (4-44)
r P + Pr

To determine the constants Br . Pr and p. we proceed as follows. The constant
P is found from the straight line portion of the hydrostat which is given by the
relation

a = Oi + pEP) , (4-45)

where a is the intercept shown in Fig. 4.4. The remaining constants are found by
plotting ao - a* versus zH. wherein zH is obtained from Eq. (4-38) as

&H  l og(, + pe p)  (4-46) ..

A typical plot is shown in Fig. 4.5. It follows by virtue of Eq. (4-44) that

B0a-* = B r e(PPr)ZH (4-47)

Hence, a Dirichlet series representation of the curve a - a* versus zH gives
Br/(P + Pr) and p + Pr. Since p is already known. Br and° Pr' and thus O(ZH). are
also known.

4.3 Shear at Constant Hydrostatic Stress.

In this section, the case of shear in the presence of a constant hydrostatic
stress is considered in detail. This case occupies a particularly important place within
the endochronic framework because it allows the analytic determination of F S. p and k
when F does not depend upon z.

SS

4.3.1 General Considerations.

The loading history of interest in this section consists first of a pure hydrostatic
compression some arbitrary level, say a = o1. after which o is held fixed at o and a
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shear stress r is applied. While r is being applied, the total stress tensor / is of
the form:

o I r 0

'7 =  a1  0 (4-48)

0 0

It will be assumed in the sequel that the fixed hydrostatic stress a is of sufficient
magnitude to lie on the concave portion of the virgin hydrostat. 9 his is important
because it permits the hydrostatic kernel 0 in Eq. (4-5) ) to be represented by a
Dirac 6 function, which leads to considerable analytic simplification, as we will show.

There are two basic forms of F which do not exhibit a dependence on z forS

shear at constant hydrostatic stress, namely. the form in which F does not desend
upon z per se and the form in which F depends upon z in general but. in the case
of shear at constant hydrostatic stress, the dependence vanishes. As an example of
the latter. we note the large class of materials that includes soils. concretes and rocks
for which F depends on the hydrostatic stress o and on the third invariant of the
deviatoric stress tensor. J3 ' For this class of materials.

F = Fs(O,J 31) (4-49)

* In the case of shear at constant hydrostatic stress, a is fixed at some value, say aI.
and J3 remains fixed during the shearing process. since the shear path is a radial line
in the -plane emanating from the origin. In this case, F does not depend upon z
and. in fact. is a constant.

In that which follows, the governing equations for shear at a constant
hydrostatic stress o I are derived from the general system of endochronic equations
given by Eqs. (4-4) to (4-10a.b) for the case in which F does not depend upon z .
The equations become amenable to analysis if it is assumed that a I lies on either the
quasi-linear or the concave portions of the hydrostat (see Fig. 4.3). and this
assumption will be adopted below. Procedures for utilizing the resulting equations in
conjunction with experimental data to determine F . p and k are given.

S
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It is convenient at this point to introduce the following notation:

ds= I~d2PII , d5H IdEPI (4-50a ,b)

Equation (4-9) can therefore be written as

dz = d + k2 d52  (4-51)

Since it is assumed that a lies on the concave part of the hydrostat. Eq. (4-19)
applies and, in view of Eq. (4-50b). can be written in the form:

a=ak F d5H (4-52)

0 H dz

from which it follows that

d H - dz (4-53)

Combining Eqs. (4-51) and (4-53) leads to the expression

- - FH] dz (4-54)

which, upon substituting from Eq. (4-10a). yields

[~ ~ 1- a)21/2

dz - F (4-55)

In order to proceed further, it becomes necessary at this point to select a specific
form for F .. In the following sections, the two forms for FH given by Eqs. (4-12)
and (4-36) are considered for this purpose. I
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4.3.2 The Case in Which FH -e

Let us deconpose the total plastic volumetric strain during shear at fixed a into
two components 'H and s such that

S=H + 5A ,(4-56)

where the superscripts H and s refer, respectively, to hydrostatic and shear. Then.
when

pI

FH =e P E  (4-57)

the fixed hydrostatic stress aI at the end of the pure hydrostatic compression phase
is. from Eqs. (4-22). given by

H

a= Ooe  (4-58)

It therefore follows from Eqs. (4-56) and (4-58) that. during shearing,

-oFH = = olle (4-59)

By combining Eqs. (4-54) and (4-59), and setting a = ao. we obtain

= - eH 1dz (4-60)

Setting

x e (4-61)
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we can rewrite Eq. (4-60) as

r ()2 1/2
= II- 1; dz (4-62)

l Equations (4-52) and (4-57) can be combined to give

or = k~oe dH (4-63)1 0 dz

where we have set a = a1 . Upon using Eq. (4-56). Eq. (4-63) can be rewritten as
S!

dz = ke d (4-64)

We now introduce the change of variable

y z - Z1,  (4-65)

where z denotes the value of z at the termination of the pure hydrostatic phase.
Equation (4-64) then takes the formkI

dy= dx (4-66)
UI

where Eq. (4-61) has been used. Upon integrating this expression, we find

y = J(x - 1) (4-67)

or

X=1I+M (4-68)

Now let

a = 9k (4-69)
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Then Eq. (4-68) reads

x = 1 + ay . (4-70)

which can be combined with Eq. (4-62) to give

ds 12ay + 8a2y 2

dz (I + ay)

In view of Eq. (4-65). this equation becomes

= [2a (z - z a2 (z _ l )2]1 2  (4-72)

Si nce

dzs = " (4-73)

Eq. (4-72) can be rewritten as

d 2aFw + a 
sw

d = F + aFsw) (4-74)

where we have set

W=z - zs  (4-75)

Here, zi denotes the value of z at the termination of the pure hydrostatic phase.
S -s

After the pure hydrostatic compression phase has been completed and shearing
begins at a = a. we can write from Eq. (4-53) that

deS -e P pd (4-76)
p 0k
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where e H and es denote, respectively, the plastic volumetric strains at the end of the
pure hy~rostaticPcompression phase and during shearing.

For monotonic hydrostatic compression to a I we have

-H

a 01 e PH  (4-77)

It then follows from Eqs. (4-76) and (4-77) that

S

des- dz (4-78)

I which shows that des is always positive, thereby indicating that this model exhibits
only compaction when there is shear in the presence of a fixed hydrostatic stress.

The deviatoric plastic strain increment tensor corresponding to Eq. (4-48) is of
the form

U
o d7 P 0

d p = d7P 0 0 , (4-79)

U 0 0 0.

so that

I1 jde~l = 1-2d 7 P (4-80)

Introducing this expression into Eq. (4-9). and setting df = dEs. gives
p p

dz 2 = 2(d 7 p)2 k~de5 Js 2 (4-81)

Equation (4-78) may be solved for dz and the result combined with Eq. (4-81) to
yield the expression
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k del 2pe- 1 1/2 2 d7 p  (4-82)

S s

Recalling the change of variable given in Eq. (4-61). and with s Es. we can
rewrite Eq. (4-82) in the form P

k(x 2  1) = d 7 p , (4-83)

which can be integrated to give

fJ7I Of cp'j= r (4-84)L Co•1X
where

PCS

x B e p  (4-85)

and the vertical bars enclosing a symbol denote its absolute value. Equation (4-84)
therefore provides a closed-form theoretical solution for the shear-volumetric coupling
during shear at a constant hydrostatic stress. The interesting feature of this equation

m is that the functional dependence of cs on 7P is independent of the hydrostatic stress• P

a. provided that the fixed hydrostatic stress or is on the concave part of the
hydrostatic curve. This important prediction, which results from the model, has been
verified recently for a soil with weak cohesion by the authors. Since P is known
from the hydrostatic test, k can be found by fitting Eq. (4-84) to the e-i ..rimentally
obtained curve of the function es(7P).

p
We now return to the question of the shear stress response to increasing shear

strain in the presence of constant a. In view of Eq. (4-4). we can write

r= p~z- z') dz' (4-86)

0
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However. "yP = 0 during the pure hydrostatic compression phase, i.e.. for z in the
range 0 S z < z1. Therefore. if we set

S S

- z (4-87)

and recall Eq. (4-86). it follows that'W
r jp(w - w)d p dw" (4-88)" - W dw"

0

We note that

d 'vp dz (4-89)
dw dz dw

and

dz dz F (4-90)
dw dz sS

Consequently.

=F d~p  (4-91)
dw s dz

Let us now integrate Eq. (4-64). with 5 rH during the shearing process: this
leads to the expression 

_

S/
z- 1 = - lJ . (4-92)

Setting

y B z - zI (4-93)

and recalling Eq. (4-61). we may write
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t. .

k Y (4-94)

In view of Eqs. (4-81) and (4-93). it follows that

dz 2 = dy2 = 2 (d7p) 2 + k 2 (d EJ 2) (4-95)

Equation (4-94) may be differentiated to give

dx = M dy (4-96)

which, in view of Eq. (4-61). may be written as
t!

Pe P de= dy (4-97)
p kc

* or, in view of Eq. (4-85).

P x dES = dx (4-98)
P

We now introduce Eqs. (4-96) and (4-98) into Eq. (4-95): this gives

k2  - i2dx2  2(d7) (4-99)

P2  I1 -

and upon taking the root we obtain

1 _ dx = F d~p  (4-100)

Returning to Eq. (4-91). we note that

_ 1x_ d dx d (4-101)
dz dx dz dx dy dz
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Since dy/dz = I from Eq. (4-93) and

dx _ A (4-102)
dy - k

it follows from Eq. (4-101) that

dyP OP(4-103)
dz kdx

Upon combining Eqs. (4-100) and (4-103). we find

d-yP 1/2(4-104)

which, when used in conjunction with Eq. (4-91). leads to the expression

1/2 (4-105)

* ,

If F does not depend upon z. we can integrate Eq. (4-90) to obtain
S

S

Therefore, on the basis of Eqs. (4-93). (4-94). and (4-106). it follows that

X = 1 + k Fs (4-107)

Equations (4-104) and (4-107) can be combined to give

GwP= F G(w) (4-108)dw S
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L 

,

where we have set

(2a F w . a2F~w2]"1/ 2

(w) (l F (4-109)

* and

ak

In view of Eq. (4-108). Eq. (4-88) may be written as

,r(w) = p(w - w') G(w')dw. (4-110)

0

An inspection of Eq. (4-109) reveals that the function G(w) satisfies the basic
requirements stipulated later in Section 4.3.4. Therefore, on the basis of the proof
presented therein, we can write

z
lui p(z s - z')G(z')dz" = M. (4-111)

zS +a 0 
"

where

M. fp(z -) dz (4-112)

.0

and M. < a. Therefore. if we denote the limiting value of the shear stress by 7"., it
follows from Eqs. (4-109) and (4-110) that

F
'. =- M (4-113)
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3 Without loss of generality. F may be normalized to unity at some arbitrary reference
hydrostatic stress aR ' When this is done. Eq. (4-113) becomes

-a = . ,(4-114)

which may be combined with Eq. (4-113) to give, at an arbitrary a.

T.(oR) _ Fs  (4-115)

This expression therefore shows that. when F is independent of z. the function
F can be determined from experimental data obtained from the shearing phase of the
test. By performing the shear at different values of B in the r-plane. the dependence
of F on 0 (or J3) can be determined.

Let us consider now the determination of the kernel function p(z ). From
experimental data. one obtains the r versus 7 relationship, which is reducible to a
function of the plastic shear strain. 7P . For monotonic shearing at a fixed hydrostatic
stress, and in view of Eq. (4-50a). we can write

d 5s = T- d7 P (4-116)

Furthermore. at the initiation of shear 's = 0. so that

5s = T2 7p  (4-117)

This expression may be combined with Eq. (4-74) to give a relation between d7
p and

dw. which can be numerically integrated to give 7p as a function of w. The function
r(w) can therefore be found. When r-(w) is known. Eq. (4-110) is a Volterra integral
equation of the first kind which can be solved numerically to obtain p(w). once F is
given. A numerical procedure designed for this purpose is described in Chapter 10.s
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4.3.3 The Case in Which FH = I + pCP.

As noted in Section 4.2.2. this case applies when the constant hydrostatic stress
a at which the shearing occurs is located on the quasi-linear part of the concave
portion of the virgin hydrostat. With

FH = 1.pP , (4-118)

Eq. (4-52) takes the form

a = k1l + P) H  (4-119)

which may be combined with Eq. (4-51) to give the following expression:

d5= - +ri* P H dz (4-120)

Here. for monotonic loading. ep = 5 H and a . as before, denotes the fixed hydrostatic
stress on the quasi-linear portion of the virgin hydrostat.

We decompose 5 H into two components, as in Eq. (4-56). and write:

001 P = 00( 1~ + * O(~S (4-121)
weeH 

•

where is the value of 5H at the termination of the pure hydrostatic compression
phase. while 5s is the component due to the shear. For pure hydrostatic
compression up to a = o1. it follows from Eqs. (4-106). (4-19) and (4-118) that

1 o~j+ p5H(4-122)

Hence. Eq. (4-121) can be rewritten as
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u01 ~j= (4-123)

which can be combined with Eq. (4-120) to give the expression:

[ r A A V 2 1  /2
cl! I +t0' 5SJ-21 (4-124)

For shearing at a = a1. it follows from Eq. (4-119) that

d S
k~l +0 H +0 5A(4-125)

Equation (4-122) may be used together with Eq. (4-125) to obtain the result:

dz = k 1 + Ol- 5d . (4- 126)

If we now set

y E z - z (4-127)

=o 1s+ (4-128)

where z denotes the value of z at which shearing begins. Eq. (4-126) can be written
in the form:

rk' 11
dy = kaox dx (4-129)

Integrating this expression yields

1 ( x2 _1 , (4-130)
2a
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where we have set

a = (4-131)

ka1

- From Eqs. (4-124) and (4-128). it follows that

d r 2~1/2
dz 2] (4-132)

Equation (4-131) may be used to express Eq. (4-129) in the form:

dz = x dx (4-133)

since dy = dz. We may now combine Eqs. (4-132) and (4-133) to give the
expression:

d5s = a 1)1 dx (4-134)

which, upon integrat-on. leads to the result:

5S Jx.~ g xi _ (4-135)

Since 5s = 7 p and x = pfo/O 1 es . Eq. (4-135) is of the form:0 _P

P = 7 P[ ; , (4-136)

which provides a closed-form theoretical solution for the change in the plastic
volumetric strain during shear at a constant hydrostatic stress a1 . when oI is located
on the quasi-linear portion of a virgin hydrostat. In this case. it is interesting that
the shear-volumetric coupling depends upon a 1 through the dependence of both a and
x on a1. This is in contrast to Eq. (4-84) given earlier for the case FH = ePE
where the shear-volumetric coupling is independent of a1 . Finally, since 0 and P are
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known from the virgin hydrostat, k can be found by fitting Eq. (4-136) to the
I experimentally determined curve of the function 7p = 7 P(ES).

p
To develop a relation between 7p and z at a reference hydrostatic stress aR . we

return to Eq. (4-130) and write

x = 1 + 2 ay . (4-137)

At a reference stress a we may set F = I without loss of generality. As a result.
y = Z so that Eq. (4-F137) takes the torm:

2x = 1 + 2a z (4-138)

: Therefore. upon combining Eqs. (4-135) and (4-138). the following expression results:

= -z 1T I + 2az~ - 1091 2az5 + 11 2az51 (4-139)

* For shear at fixed o, we have from Eq. (4-79) that

s = F'2 7p  -(4-140)

* Thus, Eqs. (4-139) and (4-140) provide a relation between 7p and z during shear at
fixed reference stress or R*

To determine the shear response to increasing shear strain in the presence of
fixed o. we recall Eqs. (4-88) and (4-91). which are repeated below:

"= p(w - "'d7,P dw' (4-141)

dw"

0

F sd (4-142)
d - = Fs dz
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where

w = z - z 1 (4-143)

Since s= F2 7 p we can write

d_ dP d 5s 1 d(-4
dw d5s dw dw (4-144)

Equations (4-132) and (4-137) can be combined to give

d5 S 2ay 1/2
dy t1+ 2ay) (4-145)

where we have set dy = dz on the basis of Eq. (4-127). Ilnasmuch as F is
assumed to be independent of z during the shearing process. it follows that

m S ( = - z 1 (4-146)

or. equivalently.

m w = . (4-147)

Upon using this equation in Eq. (4-145). we can write

d( s  F 2a FsW 1/2 (4-148)

w = s1 + 2a 1Fw

which can be combined with Eqs. (4-141) and (4-144) to give the following expression
for r:

= . p(w - w')G(w')dw' (4-149)

0
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wherem

2a F w 1/2
G(w)=L 2a Fw] (4-150)

An inspection of Eq. (4-150) reveals that the function G(w) satisfies the basic
requirements stipulated in Section 4.3.4. Therefore. on the basis of the proof
presented there, we can write

:m l ( s - z')G(z')dz' = M. (4-151)
ZsO

bS

0

where M, is defined according to Eq. (4-112). If we denote by r the limiting value
of r as z-m. is follows from Eqs. (4-149) and (4-151) that

l* FS

To =-2 M. a(4-152)

Again, without loss of generality, we may normalize F to unity at some arbitrary
* reference hydrostatic stress a R' When this is done. Eq. s(4 -1 5 2 ) reads

M®

ro'R) = 2 (4-153)

This result may be combined with Eq. (4-152) to yield the expression

r% (a)
r,,R - F .

(4-154)

Therefore, for the case in which F is independent of z . the function F can bes
determined from experimental data obtained during the shear phase of the test. By
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L

keeping a constant and performing the shear at different values of 0 in the ir-plane,
the dependence of F on 0 (or J3) can be determined.

The procedure for determining the kernel function p(z) in this case is the same
as that described earlier in Section 4.3.2 and consequently will not be repeated.

W 4.3.4 A Proof of Equations (4-111) and (4-151).

Consider the equationIz
r(z) = p(z - z')G(z')dz" (4-155)

0

where p(z) is a weakly singular. positive, and monotonically decreasing function of z
in the domain o < z < a. and

li ip(z) = 0 (4-156)
Z4 ,

In this section. we establish the basic requirements that the function G(z) must
satisfy in order for the following limiting condition to hold:

I i p(z - z')G(z')dz" =Ma (4-157)

0

where

M(z) = (z')dz" (4-158)

0

and M =-() < u (4-159)
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1 First, we note that M(z) is positive, monotonically increasing and convex in the
sense that

M (z) - M (z - a) < a z (4-160)

Therefore, in view of Eqs. (4-158) and (4-160)

M(z) - M(z - a) < a p(z - a) , (4-161)

so that from Eqs. (4-156) and (4-161) it follows that

Iim{M(z) -M(z-3)}=0 (4-162)

To prove the validity of Eq. (4-157) for certain functions G(z). we first prove the
following theorem.

U Theorem: Let R(z) be a positive monotonically decreasing function, bounded from
above and below in the sense that

0 < R(z) - R(0) (4-163)

* and

li mR(z) =0 (4-164)

The operational definition of Eq. (4-164) is as follows: Given an 6, however small.
there exists a z < * such that

R(z) < e . (3.121)

Then, the following is true:

(z

lim p(z - z')R(z')dz = 0 (4-165)
Z-+W

0
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Proof: The integral I on the left-hand side of Eq. (4-166) may be written in the
form:

S= Jp(z - z')R(z')dz" + p(z - z')R(z')dz' (4-167)

-0 Z
0

where 0 < z < z. Because of the properties of R(z). it follows that

0 
0p(z - z')R(z')dz' ( R(O) p(z - z')dz" (4-168)

0 0

or. in view of Eq. (4-158). we may write this as

0f(z - z)R(z)dz' < R(0) {M(Z) - M(z - z 0)) .(4-169)

0

Therefore, as a result of Eq. (4-162). Izo
lim p(z - z')R(z')dz* = 0 (4-170)

0

Following the same reasoning as above, it can be shown that

Zp(z - z')R(z')dz" ( R(ZoUMz - zo) (4-171)

z
0

Hence:

limZp(z - z')R(z')dz' < MODR(zoJ (4-172)

Z+00J

0
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n Because of the properties of R(z) defined by Eqs. (4-165) and (4-166). the right-hand
side of Eq. (4-172) can be made as small as one pleases. in the sense that given an
E however small there exists a z such that0

M R(zo) <E (4-173)

Since z may be any large finite number. MR(z ) may differ from zero by an amount
which coan be made as small as one pleases. fherefore. in view of Eqs. (4-170) and
(4-173). Eq. (4-166) is true and the theorem is proved.

Returning now to Eq. (4-166). we note that whenever the function I - G(z) has
the properties of R(z), it follows that

'z
r pm z - z') (1 - G(z'))dz = 0 (4-174)

0

I and hence Eq. (4-166) is proved.

n
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5. GENERAL TOPICS

In this chapter we deal with certain specific aspects of endochronic plasticity
which, however, have wider implications in the general subject of constitutive theory.
In Section 5.1 we deal with the topic of history-induced anisotropy in materials that
are isotropic in their initial state. In Section 5.2 we discuss Drucker's and ll'iushin's
postulates and address the problem of closure of hysteresis loops in one-dimensional
stress- strain space. We also touch upon some of the thermodynamic implications
which do not appear to be well understood in the literature. In Section 5.3 we also
discuss Drucker's and lI'iushin's postulates as they relate to irreversible
thermodynamics and more specifically to endochronic plasticity, insofar as the Il'iushin
postulate is concerned, and finally in Section 5.4 we discuss questions of uniqueness
of boundary and initial value problems for inelastic solids and deal with these more
specifically in the context of endochronic plasticity.

5.1 Isotropy and History-Induced Anisotropy.

Because this is not a text book on continuum mechanics we do not intend to
devote an inordinate amount of space to the details of this topic which can be found
elsewhere. In simple materials -- in the sense of Noll [5.11. where the stress is
determined by a functional of the deformation gradient -- objectivity is satisfied by
formulating a constitutive equation in the material frame of reference (Lagrangian
formulation). The result is a general statement of the fact that the Piola stress
tensor Z is a function of the history of the right Cauchy-Green deformation tensor C
or. equivalently, of the Green strain tensor where

= 2[g- k)(5-1)

Thus in mathematical terms

-r = F , (5-2)

the functional E being defined with respect to a time scale which, for the moment
we leave unspecified.

In small deformation problems the Piola stress tensor - is approximately equal
to the Cauchy stress g and the Green strain tensor E is also approximately equal to
the small strain tensor I so in a first order of approximation of the displacement
gradient norm IlVuli one writes
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S=F[4] .OIVuII 2  (5-3)

and no distinction is made between ; and r. Furthermore objectivity, in regard to
Eq. (5-3). is now satisfied (only) approximately provided that strains and rotations are

A small.

The fact is. however, that strictly the correct formulation is

Z = F[] ,s(5-4)

even though the measurement of r is approximate in the sense that it is measured
relative to the spatial (laboratory) frame of reference. However in that which follows
we shall make no further distinction between r and •

5.1.1 Definition of Material Symmetries.

Let x. denote a Cartesian material frame of reference which, insofar as small
deformation fields are concerned. may be approximately represented by a stationary
laboratory frame. Also let R represent all transformations

x = Rx (5-5)

*m or

x i = R.,.x. (5-6)

such that

I Xil = IX I '(5-7)

where single bars denote the norm of a vector. Evidently transformations R leave all
material vectors unstretched. Also they are divisible into two irreducible classes R
and R . The former involves reflection of the coordinate system about the origin
(and is the only member of its class) while the latter involve rotation without
reflection. All other R's can be obtained by successive application of R + and R-.
We note that
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Det(R.) =-1, Det(R.) + 1 (5-8a,b)

Definition

-- A material is said to possess symmetry with respect to a group G of
transformations R if the functional F is form invariant with respect to transformations
of this group. Thus in matrix notation

R F[E]RT = F[ReRT] (59)

5.1.2 Experimental Justification.

Condition (5-9) is appreciated most readily by considering the following
experiment. Let a homogeneous strain history E be applied to a specimen in a
coordinate system x, and let the stress response be Z in accordance with the relation

= Ek] (5-10)

N lLet now another strain history " be applied to the same specimen in the same
coordinate system, where k is related to the previous strain history t by a
transformation R of the symmetry group G. i.e..

R R RT  (5-11)

A material will have symmetry with respect to R if the new observed stress response
is related to Z by the same transformation. i.e..

o= R a RT (5-12)

Since the material has not changed. and the coordinate system has not changed, the
function E has not changed either. Thus

= (5-13)

Now using Eqs. (5-11) and (5-12) in Eq. (5-13) we obtain Eq. (5-9).
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Remark

Simple materials are centrosymmetric. This is evident since

e- 5 (5-14)

where 6 is the unit matrix. Therefore condition (5-9) is satisfied for all F.

5.1.3 Definition of Isotropy.

A material is said to be isotropic if and only if constraint (5-9) is satisfied for
all R and, therefore, all R. in view of the above remark. The group that contains
all R is called the maximal group Gma x.

Example

16 Equations (3-1) and (3-2) are constitutive equations of an isotropic material. To
demonstrate this we note that for any R in Gma x the response Z to the strain history
- where

3 P = R ePRT (5-15)

and

= R RT  (5-16)

is given by the expression:If"
= - Z dz (5-17)

However, in view of Eqs. (3-7) and (3-8a). we have

z =z 5  (5-18)

Thus

5-4
p S



L

*z (Z) dep  1

Z J T73 dz ,(-9

0

and it follows that

R z dz RT z ' dz (5-20)
PZ = Z] zzs- z'

-0 0

Hence Condition (5-9) is satisfied for all R in G insofar as the deviatoric responseI max

is concerned. The proof for the hydrostatic response follows similar lines. Thus the
material is isotropic.

5.1.2 History-Induced Anisotropy.

1 There is a great deal of ill-defined terminology which attempts to describe
perceived anisotropy by virtue of application of a history of strain or stress. Such
phrases as "strain-induced" and "stress-induced" anisotropy abound. Here, we shall
proceed very carefully to define the meaning of "history-induced" anisotropy.

Let a material element be isotropic in its reference state. A pre-history is a
strain history of this material element, at the conclusion of which the stress tensor in
the element is zero. In colloquial language such a history must involve "loading" and
"unloading" since during the initial part of the Iiistory a stress is induced which must
be subsequently removed. For the sake of easy reference we call that new stress-free
state of the element the "subsequent" state.

It is an experimental fact that in metals which have undergone plastic
deformation, the condition of isotropy, i.e.. Eq. (5-9) is violated when applied to the
"subsequent" state. We show this below by recourse to Eq. (3-1) for materials that
are plastically incompressible. -!

i 5
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To this end consider the case where the material element is in its i state
i.e.. in a state prior to the application of the pre-history as defined above. Consider
now a history £p(l) where

ep

= (5-21)

op
2.J

In this case and as a result of Eq. (3-1). we can write:

S

2 (5-22)

S

3 where

z de p

S p(z z') T dz" (5-23)

and for easy reference we have set z = z.

This stress field is due to simple tension in direction xF.

Consider now a history ep(2) where

ep

p ( 2 ) = ep  
(5-24)

ep
2
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In this case

s
22" =s (5-25)

S
a2

which is simple tension in direction x2.

It follows from Eqs. (5-22) and (5-25) that the stress response in the first
experiment -- simple tension in direction x -- is exactly the same as the stress
response in the second experiment, which is again simple tension in direction x2.
This is one example where in colloquial terms the stress response is independent of
the strain field orientation relative to the material. More precisely. rotation of the
strain field relative to the material gives rise to the same rotation of the stress field
relative to the material. In isotropic materials this is true of all rotations.

Consider now the case where the history t p ( '. given by Eq. (5-21). is applied
to the material after a history 2P has been applied, where

1p

e (5-26)

1-p

so that at the terminal point of this history (which qualifies as a prehistory) the
stress is zero. i.e..

0 (5-27)

0'

5-7



Thus setting z B z for easy reference, then at z - z1 (the terminal point of the
prehistory) we ave

Izj dzZ
p - z' dz = (5-28)

10

Note that the history p(  is again being applied to an initially stress free material
which, however, now has a pre-history 1P which consists of loading and unloading in
simple tension in direction x .

We note that now s! I) which is the deviatoric component of stress in directionI '

x1 after the application of the history eP. is given by the expression:

z Iz

sfl) = p(z- z') deP p(z- z')deP  (5-29)

0 zz1

where

IZi 0, z =z 1J p(z - z') dep (5-30)

0 0, z#z 1

On the other hand when history gp(2 ) . given by Eq. (5-24). is now applied following
the prehistory gP. it follows that

Z Iz

s(2) - p(z - z) de+ p(z - z')dep  (5-31)

0 z1

in view of Eq. (5-26).

Clearly s(I) 0 s( 2) . so that rotation of the strain field in a plastically deformed

metal (a material wi plastic prehistory) no longer produces a mere rotation of the
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stress field. Thus the material is no longer isotropic if the state with a prehistory is
regarded as the initial state. Note however that the material is isotropic when
referred to its virgin state.

The problem may be considered in more general terms. From Eq. (3-1) we can
write Z Iz

= Jp(z - z') de p  J p(z - z')d 2
p , (5-32)

0 1z1

where eP is a pro-history in the sense that

p lz l - z') d p = 0  (5-33)

.0

With an appropriate change of variable. z* = z - z1. and noting that prior to z = 0
there was no prehistory. we can write:

10 Z
=Pp(z - z')d+P + p(z - z')deP, (5-34)

-uo 0

where the star has been dropped on z and

0

p(z - z')dep = 0 (5-35)

One may write Eq. (5-34) in the form

I = + p(z - z')dgep  (5-36)

0
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S where SO) but not if z > 0.

It follows from the definition of isotropy (Eq. (5-9)) that if the material is to be
isotropic in its new reference state then

SR §o RT = o (5-37)

But Eq. (5-37) is possible only if so = 6 However 1o is a deviatoric tenscr so that
the above condition is impossible to satisfy. Thus any plastic strain prehistory will
always bring about induced anisotropy relative to the "subsequent" reference state.

5.2 The Postulates of Drucker and Il'iushin.

This section is devoted to a discussion of the postulates of Drucker 15.2] and
Il'iushin [5.31. It is shown that both postulates are satisfied in the small by the
endochronic plasticity theory discussed herein. Contrary to popular opinion, it is
proved that both postulate have a common origin and are. in fact. variants of one
and the same thermodynamic postulate.

• 5.2.1 The Drucker Stability Postulate.

In 1959. Drucker 15.21 introduced a "stability" postulate on the basis of a work
hypothesis. The postulate states specifically that if a material is in a stress state o
then the work performed by the extra stress in plastically deforming the material in
an isothermal cycle of "application" and "removal" of stress relative to the state 0 is
always positive. Thus

a(Z - g)d > 0 ,(5-38)

where the subscript a to the integral signifies a cycle that is closed with respect to
stress. If e is infinitesimally close to go then Ineq. (5-38) becomes
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M lwhich is a statement of positive work by an infinitesimal stress increment in an
infinitesimal closed stress cycle (in the sense that upon completion of the cycle the
stress state is eo).

Evidently this postulate cannot admit softening materials since a closed stress
cycle in such materials cannot be performed. However in the case of hardening
materials with a yield surface, the above postulate gives rise to some definitive results
as demonstrated in Ref. [5.31. There. it is shown that the yield surface must be
convex and that the plastic strain increment must be normal to the yield surface in
stress space.

In Figure 5.1 we give the initial and subsequent yield surface (at its outermost
point prior to unloading) in connection with a cyclic stress path that originates and
terminates at the point 0 by means of "application" and "removal" of stresses in the
sense of Drucker i.e.. during application

ac > o s-o(5-40)

while during removal

o.d <0 o (5-41)

where

'C(er) = 0 (5-42)

is the equation for the yield surface. g being structural parameters or internal
variables. Thus the "removal of stress" designates a stress path which lies totally
within the yield surface. We note that since 0 is within the subsequent yield surface
(this is an important consideration). the work done in going from B to 0 is
independent of the path. Thus
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Figure 5.1. A closed cycle in stress space.

Yield Surf ace

Figure 5.2. Violation of lneq. (5-47).
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(Z Ig~o) dj= (2 0) ede (5-43)
BA"O BAD

and
U

1 -A

a A B

But since the path BA is totally within the yield surface. dk = d~e. and thus. using
Eq. (5-44):

'e - e)* dt (e - go d~p (5-45)
o 'A

for any path AB such that 0 is within the subsequent yield surface. Thus the
Drucker inequality requires that

• ( I -] d~ > 0(5-46)

A

provided that the material possess a yield surface and the point of origin of the cycle
lies within the subsequent yield surface.

Note that elastoplastic coupling is not admitted (in the sense of elastic
properties being influenced by plastic deformation) otherwise on the return path BAO.
the elastic work from A to 0 is not equal to its counterpart from 0 to A. However
more will be said about this later.

Drucker's argument of normality and convexity is two-fold. We repeat it here
for the benefit of the reader. We shall limit ourselves to the associated flow rule,
i.e.. the case where the plastic potential and the yield function have the same form to
within a constant of proportionality.

5-13
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The fundamental hypothesis of classical plasticity is that the direction of the! increment of plastic strain depends on the previous history of stress but is
independent of the direction of the current stress increment.

With this in mind. we shall show that Eq. (5-46) is central to the geometric
demonstration of convexity and normality.

(i) To show normality, set ao = oA and let a be infinitesimally close to oA ' Then
Ineq. (5-46) becomes:

" 6 > 0 (5-47a)

or

62 6tp > 0 (5-47b)

Note that. for this form of the inequality, the question of elastoplastic coupling is
irrelevant since the branch OA in Fig. (5.1) is missing and B is infinitesimally close
to A so that the elastic properties are calculated at A.

With regard now to Fig. (5.2) it may be seen that if 6,P is not normal to the
surface, a stress increment 6g can always be found to violate Ineq. (5-47) since the
direction of 6tp is independent of the direction of 6q. Thus 5tP must be normal to
the yield surface.

(ii) To show convexity, again recall Ineq. (5-46). and let B be infinitesimally close to
A. It then follows (to a first order of magnitude) that

A - o" p > 0 (5-48)

With regard to Fig. 5.3 it is evident that a yield surface cannot be concave since a
stress vector eA - go can always be found which violates Ineq. (5-48).

Again. note that the question of elastoplastic coupling is irrelevant since B is
infinitesimally close to A so that any change in elastic properties is of second order in
116tPI1 as opposed to the first order validity (injI6gP5I) of Ineq. (5-48).
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5.2.2 Drucker's Postulate and Endochronic Plasticity.

In Chapters 2 and 3 we dealt with two constitutive equations of endochronic
plasticity, one with a finite yield surface and one without. On the other hand. we
showed in Chapter 3 that the latter model can be approximated to any desired degree
of accuracy by an infinitesimal kinematic hardening surface. Thus it may be
represented by a constitutive equation of the typeOZ

de p  de p

2 = So + JPi(z - z') -- dz" (5-49)

where s is of infinitesimal magnitude and p, is well behaved at the origin, i.e..
p1(o) < 0.

The response associated with Eq. (5-49) is discussed in Section 6 of Chapter 3.
where it is shown (Eq. (3-219)) that given a stress increment ds such that

(2-M) od 0 , (5-50)

where

z

= p1(z - 7')- dz" (5-51)

0

The corresponding value of d5. (i.e., an increment dt which constitutes loading).
which is non-negative and positive when Eq. (5-50) applies, is given in Eq. (3-219)
whereby

H d= * 
(5-52)

s Fo s

s being the initial radius of the yield surface and F the deviatoric hardening
junction. The function H is given by Eq. (3-220) i.e..
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H = pl(O) . soF F2  (5-53)

o s

in the notation of Section 3.6. where it was shown that H is always positive provided
that

dF
V > 0 d (5-54)

i.e.. no softening is permitted to take place in the course of plastic deformation.

If. on the other hand.

(2 - M) " d2 _5 0 .(5-55)

it was shown in Section 3.6 that d5 = 0 and the deformation is elastic. Thus
Ineq. (5-50) is always satisfied in the course of plastic deformation. It was also
shown (Eq. (3-212)) that

dp= d- (2 _ ) (5-56)
os

Thus in view of Ineq. (5-50). and Eq. (5-56). we can write:

dP- d (2F - . d,§ > 0 (5-57)
sF0 S

Therefore, the local form of Drucker's inequality is satisfied.

5.2.3 II'iushin's Postulate and Endochronic Plasticity.

This postulate [5.3] states that positive work is done in an isothermal closed
cycle of strain.during which plastic strain takes place, Thus

W= £ e d > 0 (5-58)
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Il'iushin demonstrated [5.31 that in the context of a plasticity theory where the yield
1 surface is defined in strain space the postulate is sufficient to establish convexity of

the surface and normality of the increment of plastic strain to the yield surface.

In this section we demonstrate that the endochronic theory of plastically
incompressible solids satisfies the Il'iushin postulate when the stress and/or strain

I fields are one-dimensional. Specifically in Fig. 5.4, we show a plot of shear stress s
versus shear strain e for a history of homogeneous deformation where the strain
increases monotonically from zero to a value eA at point A. decreases to a value eB
at point B and then increases again to its previous value eA at point C. The
Il'iushin postulate requires that according to Eq. (5-58):

I sde ) 0 (5-59)

e

In the case of a constant (positive) elastic shear modulus unaffected by plastic
deformation, as is substantially the case in metals, we can write

fsdee =I fsds ,(5-60)

e e

where ee is the elastic shear strain. Therefore, to satisfy the ll'iushin postulate it
suffices to show that

f sdeP 1 f s ds > 0 (5-61)

e e

However we note that neither of the above integrals is closed with respect to itself.
in the sense that

SA S e Pec ' (5-62)

a fact that makes the first integrqal in Ineq. (5-61) difficult to evaluate.
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Figure 5.4. An ll'iushin cycle.
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The difficulty is avoided by reference to Chapter 2 where it was demonstrated
that the constitutive response of a plastic solid in shear consists of the series
superposition of an elastic and a rigid plastic solid as illustrated in Fig. 2.1.
Therefore insofar as the essential constitutive characteristics of the theory are
concerned one need only apply the ll'iushin principle to the rigid plastic solid, i.e.. the
constitutive equation (2-87). whereby

rzs = jp z - z') ~-'dz" (5-63)

The intention, therefore, is to show that

s de p ) 0 (5-64)

O
p

in the presence of the constitutive Eq. (5-63). in accordance with Fig. 5.5 where ep

has been denoted by 0 for convenience of notation.

Furthermore, in that which follows, we shall limit ourselves to the case where

F(z) = 1. (5-65)

i.e.. no hardening takes place during the deformation process.

Analytical Demonstration of neq.(5-641.

The history of 0 versus z for the strain history shown in Fig. 5.5 is depicted in
Fig. 5.6. where 0 stands for ep.

Loading takes place in the range z 5 z zA. while unloading in the range
z < z 5 zB . Reloading occurs in the range z < z < *. The end point of
reloading is z. We consider each of the phases below in detail.

00
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Figure 5.5. A closed strain cycle.
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Figure 5.6. History of 9 versus z.
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(i) Loading: dO/dz = 1. 0 . < . z A

In this case Eq. (5-63) gives the following relation for the shear stress:

s = M(z) = M(8): sA = M(zA) = M(OA) (5-66)

* lwhere in the notation of Chapter 3

U(z) = p(z')dz" (5-67)
0

(ii) Unloading: 1, 0 - ZA, dz - z
dz Adz A < z ( z ZB.

V Again, using Eq. (5-63)

s = M(z) - 2M(z -zA) , (5-68)

* where in view of Fig. 5.6

z = 2 0A -9. zA = 0 A (5-69)

Setting:

- 0 = x (5-70]

it follows from Eq. (5-68) that

s = M(e I + x) - 2M(x) . (5-71)

where the suffix U designates the functional dependence of s on x during unloading.

(iii) Reloading:

d 1< d
dz , z< ZA; ZB<z , = , ZA < z zB

Again. using Eq. (5-63) in conjunction with the above values of de/dz one finds that
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s = (z) 2M (z - zA) . 2Mz-z , (5-72)

where

ZA = eA ZB = 2eA - B (5-73)

z- z= a A - 20 B - ZB = - aB  (5-74)

Set ing

y = - B , A = aB - aA (8 '2) (5-75)

one obtains the following expression for s

3 = M(y . +A) - 2M(y + A) + 2M(y) (5-76)

where the suffix R designates the dependence of s on y during reloading.

We now note that

X + y =(5-77)

Thus in terms of y

sU = M(9 A + A - y) -2M( - y) (5-78)

To prove that Eq. (5-63) satisfies the I'iushin postulate it is necessary and
sufficient to show that the integral I. where

N fs R - sU)dy (5-79)

0

is positive for all A < , i.e.,

= [R - su)dy > 0 (5-80)

0
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To this end let x be a running variable and M* the integral of M(x). i.e..
A

M (A) = oM(x) dx (5-81)

It then follows that. in view of Eq. (5-76)

, dy M M(2A * ] - M A . eAJ

10

- 2 M*(2A) + 4M* (A) (5-82)

and

{sU dy = M(OA + A) - M*(OA - 2M (A) (5-83)
10

Now since 1(0) = 0. it follows that to prove that I(A) is positive for all A < a, it is
* sufficient to show that

d > °  , A < (5-84)

i.e.,

6M(A) - 4M(2A) +

SM(2A + eA) - 2M(A + A) + M[PA > 0 (5-85)

But M(x) is a convex function in the sense that:

(x - a) - M(x) > M(x) - M(x + a) (5-86)

for all x 0, a _ x. Therefore
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SM(x -a) -2M(x) + M(x + a) > 0 (5-87)

Thus letting x = A + 0A; a = A, it follows that

M(2A + A ) 2M(A + 9,)J M(GAJ > 0 (5-88)

To prove Ineq. (5-85) it remains to show that

3M(A) > 2M(2A) (5-89)

This of course is a constraint on the stress strain curve.

Specifically with reference to kernels of the type given by the following
expression (which are valid near the origin and are therefore appropriate for
infinitesimal cycles)

-a

p(z) = poz  (5-90)

one obtains

M(A) =Po AP (5-9l) 

Thus for such kernels, and in view of Ineq. (5-89). we have

2 p < 3(5-92)
2

or

P < 0.585; a > 0.415 (5-93)

Note that for infinitesimal cycles this is a necessary and sufficient condition that the
ll'iushin postulate is satisfied. Generally for metals. 0.8 < a < 0.9 so that the above
constraint is always satisfied.
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5.2.4 Hysteresis Loop Closure.

Hysteresis loop closure in the context of a one-dimensional stress-strain response
is the condition in which the reloading curve emanating from point B in Figure 5.5
lies above the unloading curve AB. Experimental observation indicates that this
behavior is characteristic of dissipative, rate-insensitive solids. A perusal of Figure 5.5
shows that closure is a necessary condition for the satisfaction of Il'iushin's inequality.
Thus. since we have already demonstrated that the endochronic theory satisfies
Il'iushin's Postulate, in one dimension, we have also demonstrated that the model also
exhibits closure of hysteresis loops in a one-dimensional stress-strain space.

5.3 The Thermodynamically Conjugate Postulates of Drucker and ll'iushin.

In this section. the thermodynamic conjugacy of the Drucker and Il'iushin
postulates is demonstrated by showing that they can be derived from a single
thermodynamic postulate which is stated below.

5.3.1 A Thermodynamic Postulate.

Consider the following thermodynamic postulate:

"The irreversible entropy production during an isothermal cycle, closed
either with respect to stress or strain, is greater than the free energy
released during the cycle."

Stated analytically. the above postulate is given by the expression:

OA7 > - A (Free energy), (5-94)

where 0 is the temperature. 7 the irreversible entropy and A denotes the net change
measured at the completion of the cycle.

It must be emphasized that Ineq. (5-94) is a postulate and not a fundamental
thermodynamic requirement, insofar as we know at the present time.

The Gibbs Formulation.,

In this case the independent variables are the stress and the internal variables

2r' and the free energy is the Gibbs free energy 0. Thus Ineq. (5-94) becomes
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or

8fd7 >- {do (5-96)

which may be written as

But

Bu d = - d7 (5-98)

and

-- - OO8g ,(5-99)

so that Ineq. (5-98) reduces to the form

-f d>o , (5-100)
fa

which says that the net complementary work during a stress cycle must be negative.
Or more generally

- f - dg > 0 (5-101)
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for any 10 since fode = 0. Or more generally still

d > 0 (5-102)

for any 0 which is constant and which here is the point of origin of the stress cycle.

We now integrate the lefthand side of Ineq. (5-102) by parts to obtain

a

(I- o -e-o)e d (t - co) >0 (5-103)
a 01

0

Since the lefthand side is zero and I is constant, it follows that

f (a - go) * dg > 0, (5-104)

which is the Drucker postulate [5.21.

Thus, contrary to a number of previous statements, some by Drucker himself
15.2]. the Drucker Postulate is. in fact. a consequence of a thermodynamic inequality
which states that in the course of a thermodynamic cycle, isothermal and closed with
respect to stress, the increment in dissipation is greater in value than the decrement
in the Gibbs free energy.

The Helmholtz Formulation.

In this case. the independent variables are the strain and the internal variables
and the free energy is the Helmholtz free energy #. Thus Eq. (5-94) becomes

U AS > - (5-105)
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afdyr- d# (5-106)

ll which can be written in the form:

d£*y> d *d~r) (5-107)

But

L e d7 = - * (5-108)

and

1 £ - (5-109)

Thus Ineq. (5-107) becomes

g * dt > 0 (5-110)

which is the Il'iushin postulate (5.31. Now since d = 0, Eq. (5-110) can be re-
expressed as the "modified" Il'iushin postulate in the form:

f (Z - go d 0 (5-111)

Thus the "modified" ll'iushin postulate requires that the "work done by an external
agency in the course of a closed strain cycle be positive.
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Specifically if 0 is close to I we have the following local, modified form of the
ll'iushin postulate:

6e " 6 > 0 , (5-112)

which is the "conjugate" of the Drucker postulate in its local form. given by
Ineq. (5-47).

We illustrate the physical meaning of the above postulates in the following
section by means of a stress-strain diagram in the case of a simple elastic-perfectly
plastic solid, shown in Figure 5.7.

5.3.2 Thermodynamics of an Elastic-Perfectly Plastic Solid.

Let the spring stiffness be E and the frictional resistance of the block be b.
The Helmholtz free energy is the strain energy stored in the spring so that

2 2 (5-113)
22

or

= E(- e.q) 2  (5-114)

The stress a is given by the expression

E(e - q) (5-115)

which is of course as it should be since ce is equal to f - q.

The Gibbs free energy 0 is related to # by the expression:

= 0- ac (5-116)

where 0 is a function of a and q. Thus using Eqs. (5-113) and (5-115) in
Eq. (5-116). it follows that
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S= - a q (5-117)

We may now use the thermodynamic equations associated with #. i.e..

8u' Bq dz

where

dz = Id PI (5-119)

d = dE - d eC = dq (5-120)

and use was made of Eq. (5-115) in Eq. (5-120). Thus

dz = ldql (5-121)

I
In view of Eqs. (5-118a.b)

E (5-122)= +q

D = bdz (5-123)

Thus using Eqs. (5-120) and (5-123)

a = b d Ep  (5-124)
dz

Equation (5-124) is the endochronic constitutive equation of an elastic-perfectly plastic
solid.
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The Dissipation

We recall the relation

6d7 = - dq ,(5-125)

where Gd7 (the temperature multiplied by an increment in irreversible entropy) is equal
to dD where D is the dissipation. Note that

dD = 6d7 = odq = ode , (5-126)

by virtue of Eqs. (5-117). (E '20) and (5-125). Thus in this simple model the
dissipation D is equal to the pla.ic work Wp. i.e..

D = WP = fodeP (5-127)

The Gibbs Type Postulate of Drucker.

We now return to the illustration of the postulates of the Gibbs type (to which
the Drucker postulate belongs) by means of stress-strain diagram of the simple
elastic-perfectly plastic solid, as shown in Figure 5.8.

*I Consider first the meaning of Ineq. (5-94). In view of Eq. (5-127) we note that
8A7 is equal to the plastic work done during the cycle i.e.,

=87 = Area (B'BCC')
(5-1z28)_ .

= Area (A'BCD')

On the other hand. we can write:

=fD -A = -( E - , (5-129) -

in view of Eqs. (5-117) and (5-120).
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Figure 5.8. A Drucker cycle, ABCD, for an elastic- perfectly plastic solid.
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Thus

h - = Area (A'ADD " )

Therefore. Ineq. (5-94) states that

Area (A'BCD') > Area A'ADD" (5-130)

or that

Area (ABCD) > 0 (5-131)

which is Drucker's postulate since

Area (ABCD) = (a - aA~dE (5-132)

The Helmholtz-Type Postulate of liushin.

* We now illustrate the postulates of the Helmholtz type (to which the ll'iushin
postulate belongs) by means of a stress-strain diagram of the simple elastic-perfectly
plastic solid, as shown in Figure 5.9. The thermodynamics. in this case. is simple.
The free energy # is given by Eq. (5-114) and the stress o by Eq. (5-115). The
evolution equation for q is now

b -dz aq = 0 (5-133)

Thus

o r b bd e  (5-134)dz dz

as before.

Also

d7= dD =- dq =adq =ad P  (5-135)
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Figure 5.9. An Il'iushin cycle, ABCD, for an elastic-perfectly plastic solid.
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and thus:

dD = dWp -odep  (5-136)

as before.

We now return to Ineq. (5-105). Evidently

eA7 = AD = Area (B'BCC') = Area (A'BCD'), (5-137)

in view of Eq. (5-136). On the other hand. we have

2 2 ]

Thus by inspection:

AD = Area (A'BCD') > - #= Area (A'ADD') (5-138)

- Ior

Area (A'BCD') - Area (A'ADD') = Area (ABCD) > 0 (5-139)

which is the ll'iushin postulate.

We have thus proved and demonstrated by means of a simple example that the
Ill'iushin and Drucker postulates are conjugate versions of one and the same
thermodynamic inequality. i.e.. Ineq. (5-94).

5.4 The Question of Uniqueness.

The question of uniqueness of the solution to the initial and boundary value
problems is always paramount in constitutive theories. Models that appear perfectly
satisfactory in describing the stress response to homogeneous strain histories may give
rise to ill-posed boundary and/or initial value problems. The question was discussed
in some detail by Valanis in Ref. 15.51 . where the reader is referred. In this
reference. Valanis introduced the concept of a "positive material model". Uniqueness
proofs relying on an inequality, such as that which chracterizes a positive material
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model, have been given by other authors for the static boundary value problem. See,
for instance. Refs. 15.6] and 15.7]. The importance of the concept lies in the fact
that if a constitutive equation gives rise to a positive material model, then the
boundary and initial value problems associated with the constitutive equation have
unique solutions.

1 5.4.1 Definition of a Positive Material Model.

Let a.. (xk't) be a stress field which is continuous and differentiable in x and t:
also let u.x, t) be a displacement field which is continuous and differentiable in x
and twice dNferentiable in t. Furthermore let a.. and ui satisfy Newton's law
motion. At this point we introduce the following notation:

def
60"j = ori i(t + 6t) M

tj (5-140)

u deu u(t + 6t) - u (t)

Now let a!.I) and a!2) on one hand and i(1) and C!2) on the other, be two
stress fields an two stralin fields respectively t iat are solutions to the initial (or
boundary) value problem. A material model is then said to be positive if

M - ; 1 IeM - ) 0 , (5-141a)

whenever -1
(21,_ j('111 and I11(2) -.PIl are different from zero, or equivalently if

[6a ) _ 6,)][ -[, _ 6,& ] > 0 (5-141b)

whenever 116e(2) - 6e(1)I1 and 1161 12) - 6t(1)l are different from zero.
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A few remarks are in order. It was shown in Ref.15.51 that there are depading
1 materials which are unstable in the sense of Drucker and yet they are posit c in

sense of Eq. (5-141) provided they are strain-rate dependent in a certain consti -1
sense discussed in the above reference. This is important because there has been no
established proof of uniqueness for degrading rate-insensitive materials, to our
knowledge.

5.4.2 Uniqueness in the Context of Endochronic Plasticity.

(i) Endochronic plasticity with a yield surface.

We begin with relation (3-209). i.e..

dep

' , o d5 Fs

and set

•(2)
;I •(2) A;..= A. • - . (5-142)
ij - j ej J j - j

Then in view of Ineq. (5-141) and the fact that the hydrostatic response is treated as
elastic:

A; * Agp  *A &ae > 0 (5-143)

However

Ai.A ie Ai • C • , (5-144)

and since the elastic stiffness (in this case isotropic) is positive definite it follows
that to demonstrate that the model is positive we need only show that

*" - Aep > 0 (5-145)

whenever iIAiII s0.
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* Evidently two possibilities exist. Either both stress increments 6k,(2 ) and 6Z(1)

produce plastic strain increments 6g 2) and 61(rTrespectively. i.e..

UP
" I- ] ic  > o, '2-' •c> >o (5c-146a)

or one does but the other does not. i.e..

(~~).(1, > , 0 ii *(2) < 0 .(5-146b)

We begin with the possibility that both 62(1) and 52 ( 2) give rise to plastic strain
increments (6 t(1) ).

Now using Eq. (3-209) it follows that

A;p = f- A, A (5-147)

where

IIA = (2) _ () ,(5-148)

and thus

We now use Eq. (3-219) and note that it does not depend on P or . in view of
Eq. (3-220). Thus

s "F A2 = HA5 (5-150)
os
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Hence using Eqs. (5-149) and (5-150)

,4j p _ H(A ) 2 ,(5-151)

and since H is always positive for hardening materials it follows that Ineq. (5-145) is
satisfied and the constitutive Eq. (3-209) defines a positive material mode. Hence any
well posed initial or boundary value problem associated with Eq. (3-209) will have a
unique solution.

We now consider the second possibility whereby

(A - M) * dg(:2) > 0 ( - j) * dk1) _0 (5-152)

In this case "  0. the inequality to be proved is that

- ;( 1)J)( 2) > 0 (5-153)

However,

;()p2> 0 (5-154)
p

by virtue of Ineq. (5-153). Also

(1) ;(2) ;(1) _- _5 5~p =°so F s
o s

as a result of Eq. (3-209). But the right-hand side of Eq. (5-155) is always positive
by virtue of Ineq. (5-151). Therefore Ineq. (5-153) is also satisfied and the material
model is positive in all eventualities.

(ii)Endochronic Plasticity Without a Yield Surface.
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We now begin with Eq. (3-1). i.e..

a Z d p (

= p(z - z') - dz (5-156)

O-

where p(z) is singular at the origin and has the following form in the neighborhood of
z = 0:

-ap = po z  " 0 < a <1 (5-157)

In Eq. (5-156) we emphasized the fact that the lower limit of integration is o-. so
that while fjd2P/dzI 11 0 0. Ildtl/dzij1I = 0. In view of this observation we may
now differentiate Eq. (5-156) to obtain

1  d(z - z dz" (5-158)dz o2

0-

This is obtained by writing Eq. (5-156) in the equivalent form

Iz d 2 2 p
S= (z - z') - dz" (5-159)

0-dz .

Equation (5-159) is obtained by integrating the right-hand side of Eq. (5-156) by
parts and setting

M(z) p(z)dz dP 0 (5-157a,b)
d 0-

0-

and noting that M(0) = M(O.) = 0. Thus, differentiating Eq. (5-159) leads to
Eq. (5-158).
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Before proceeding further we set the stage by stating, without proof. the flow
rules for endochronic plasticity without a yield surface. Let & be the unit vector
tangent to the plastic strain path at its terminal point. Let 6t+ be a stress
increment such that *62,+ > 0. then +. the direction of the resulting strain
increment 6 P. is given the equation

= (-158)

The magnitude 65 of the plastic strain increment 6e p is as follows
614 F , (5-159)

where use was made of Eq. (5-158) and rV is defined by the expression:

Iz d2eP
E an p(z - z') dz" (5-160)dz2

0-

Note that m depends on the history of £p up to z' = z but not on de .

Now let 6Z_ be a stress increment such that Po ef _ 0. In this case t. the
direction of the resulting strain increment 6ep. is given by the expression

, -{ -2Z S , • S) ,(5- 16 1)

* See Chapter 7 for a detailed derivation and discussion of the flow rules of
endochronic plasticity.
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where aj is the direction of 61. However in this case1
65 = 0 . (5-162)

in the sense that

li. [H-- i =0 (5-163)

116 -I1 o

Proof of Uniqueness.

As previously, to prove uniqueness we must show that the model satisfies the
following inequality:

A; • A*P - o (5-164)

Again we distinguish two cases: (a) when both 6s(2) and 6Z,(I) are of the 6Z,+ type:
and (b) when 61(2) is of the 6+ type and 5s(1) is of the 5Z_ type. +

Case (a)

We utilize Eq. (5-158) to find that

S= m A; = m FsA (5-165)

Now we utilize Eq. (5-160) to show that

MA (5-166)

At this point we combine Eqs. (5-165) and (5-166) to obtain the expression:

,4 * e = F n)J(Q *(-167)

Thus Ineq. (5-164) will be satisfied if m > 0, or.
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J dz 2

0

* To show this we write p(z) in the form of a distribution. Specifically

R

p(z) = Rnim D((a)e-azda (5-169)
0

where the integral on the right-hand side of Eq. (5-169) converges uniformly to p(z)
as R-w. In view of this we may substitute Eq. (5-169) in Eq. (5-168) and reverse
the order of integration to obtain

lir D() • e- a(z-z') d(FsJ f dz' da > 0 (5-170)R -% d z "

0 0-

where use was made of the relation

d = Fs L(z') (5-171)

If we now integrate by parts with respect to z and use the condition P. 0,
we obtain

z -a(z-z') d dz" = Fs - a * ea(z-z ) F (z')P.(z')dz" (5-172)

0- 0

Now since

Ig(z) • g~z')t - 1 (5-173)
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m and (Fs(z) _ Fs(z). since no softening is admitted, it follows that

- e-a(z-z ) s')&(z)dz FS  e-a(z-z')dz °  (5-174)

- 0 10

ori i j F
e- ,- z-z'F (z')P(z')dz < s (1 - e(-175)

s a(-75
0

ik

Thus making use of Eq. (5-165) in Eq. (5-172) we establish the following inequality:

P r e-a(z-z') d ( e-az (5-176)dQ J (Fs zdz > Fe

0

It follows therefore that

l im[ D(a) ,&° e-a(z-z') __

Rim D()Fse-az da (5-177)
RJ0

But the right-hand side of Eq, (5-177) is equal to p(z) which is always positive and
hence Ineq. (5-170) and hence Ineq. (5-168) are proved. Thus succinctly
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z P(z Z') -- dz" > p(z) > 0 (5-178)
dz-

2

0

Therefore in view of Eq. (5-167)

A; - A;p > 0 (5-179)

and the material model is positive when ds = ds+.

Case (b)

In this case the appropriate inequality which is to be proved is:

- O(p - ;Op) > 0 (-180)+a

However. by virtue of Eq. (5-162):

P _ =0 (5-181)

Thus Ineq. (5-180) reduces to:

Ii.- . • > 0 (5-182)

But

*1
+ 0 (5-183)

as a result of Ineq. (5-179). Also
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But in view of Eq. (5-158). & = + and thus

- os0

by definition of case (b). Therefore. Ineq. (5-170) is validated.

Thus the material model is positive in all cases and the solution to the initial
(or boundary) value problem is unique.
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6. FLOW RULES IN ENDOCHRONIC PLASTICITY
(Plastically Incompressible Solids)

In the parlance of classical plasticity the "Flow Rule" is a geometric or algebraic
algorithm which answers the question:

Given a stress increment d, or alternatively a strain increment dg.
what is the corresponding increment dgP?

In classical plasticity the answer to the above question is complicated by the fact
that, depending on the direction of the stress or strain increment, the plastic strain
increment may or may not be zero. As part of the answer, therefore, there exists an
"unloading rule" which determines the directions of dt or dt for which dep is equal
to zero.

In "endochronic plasticity", and specifically in the modern version as proposed by
Valanis [6.11. such an unloading rule is not necessary because the increment in plastic
strain is never exactly zero for any situation and can always be calculated directly
from the constitutive equation, even though there are cases in which it's immeasurably
small, as we shall show in Chapter 7. One suspects, however, that since endochronic
plasticity may be regarded, in a limiting sense, as a plasticity theory with an
infinitesimal yield surface, there must exist rules, which henceforth we shall refer to as
the "Flow Rules". that give the magnitude and direction of the increment in plastic
strain without the necessary computation.

Trangenstein and Read [6.2] were the first to address this questinn. Limiting
themselves to the case of deviatoric plastic response, which we shall do here. they
considered the case of an arbitrary change in the direction of a stress path which was
previously smooth. Using specific asymptotic expansions, consistent with the
properties of the weakly singular deviatoric memory kernel, they found that the
increment in plastic strain is in the direction of the tangent of the previous stress
path at the point of origin of the stress increment.

They also found that the incremental inelastic compliance Cp has the following
properties:

idgpH fk cos 0, todg > 0_ (6-1)_
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where k is a constant. L is the unit tangent vector at the end point of the smooth
stress path (the point of initiation of the deviatoric stress increment dj) and is the
angle between I and dE . As pointed out by Murakami and Read [6.3]. the above
results were based on an assumed asymptotic expansion that forces djp to be in the
direction I and is valid only in the specific case where the smooth stress path is
radial in the i-plane.

In a more recent paper. cited above. Murakami and Read reexamined the
problem considered in Ref. 16.2]. using a more general form of asymptotic expansion
which does not place constraints on the direction of d p. Though they did not
determine, in their analysis, the direction of the resulting plastic strain increment d p

they found the following result which, as we shall show in Chapter 8. is
operationally" valid for all stress paths in a sense given in our analysis.

Let 0 be the angle between dj and dtP. Then Murakami and Read found that

0 0, cosB > 0

1dg. 1 :: o11 (6-2)
0 , Cosa < 0

More specifically their general results are summarized in the following expression:
cos

1g7(z) 2
CI -d (6-3)tol o,

where

( Czo) cos - (6-4)

z0. being the value of z prior to the imposition of the stress increment dk. Also.
using asymptotic methods, it was shown in Ref. 16.31 that, for large z and when the
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stress state is close to the ultimate surface, the plastic deviatoric strain rate vector
becomes coaxial with the deviatoric stress vector. For full details see Chapter 8.

In Chapter 7 we address the question of endochronic plastic flow rules in its
entirety. i.e.. we consider increments in stress dk relative to arbitrary previous stress
paths, or increments in strain de relative to arbitrary previous strain paths. As it
turns out it is not the direction I that determines the direction of the subsequent
plastic strain increment d2

p but &. the direction of the tangent to the terminal point
of the plastic strain path.. prior to the imposition of the stress increment d or the
strain increment de. Though the full results will be given in the analysis in
Chapter 7. we give here the essential results for the benefit of the reader, first
obtained by Valanis in Ref. 16.41.

Let g be defined as above. Also let dj be denoted by dj+ when godA > 0 and
correspondingly by dt. when R.d§, < 0. It is then shown that in the limit of
vanishingly small IId ll:

(6-5)

But

It - 22,(gon) . (6-6)

where gs is the direction of the appropriate stress increment. Note that

9 - = & (6-7)

when d = 0. Also.

d5+= Ofld +l (6-8)

but

d5_= Oildj-l-a (6-9)

Thus, if j dj+11 is of the order of 10"3 d5 is also of the same order. However if
IId jll is of this order, then given that for metals a is about 0.86, it follows that

d = 0(10 -") (6-10)
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which, of course, is not measurable. Thus from an operational viewpoint. dg 0.

In the special case where . * d = 0. d5 = 0. Formulae for the calculation of d5
are given in Chapter 7.

It follows, therefore, that while da = d + the plastic strain path is continuous
and has a continuous tangent. At points of reversal from da + to dE. the tangent
suffers a discontinuous change while the path remains continuous. The reader should
also note that. in calculations subsequent to a reversal, it is . that should play the
role of

We close this chapter by pointing out that, obviously, the lower branch of
equality (6-3) is in fact an approximation of Eq. (7-56) while the upper branch is an
alternative form. of Eq. (7-45). This is shown in Section 8.4. Of course this must
be the case because Eqs. (7-45) and (7-56) were obtained for arbitrary stress histories
while Eq. (6-3) was obtained under the assumption that the previous stress history
was smooth. Thus Eqs. (7-45) and (7-56) must contain Eq. (6-3) as a special case.
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7. ANALYTIC DERIVATION OF THE FLOW RULES OF
ENDOCHRONIC PLASTICITY FOR

PLASTICALLY INCOMPRESSIBLE SOLIDS.

The plastic flow rules of the endochronic theory are derived in this chapter for
the case of plastically incompressible solids. The versions of the endochronic theory
with. and without, a yield surface are considered in detail. Finally. a computational
scheme is given for calculating d5.

Before proceeding with the analysis, we note that in the case of classical
plasticity, the plastic flow rule is well established and can be succintly described as
follows: Let the end-point of the stress vector lie on the yield surface. Then if the
end-point of the stress increment vector dt lies outside the yield surface, plastic
deformation will take place and the direction of the increment of the plastic strain
vector djp will be perpendicular to the yield surface at the point of emanation of dj.
On the other hand, if the end-point of dj lies inside or on the yield surface then the
deformation will be elastic.

Against this background, we turn now to derive the plastic flow rules of the
endochronic theory, considering, first, the version of the theory with a yield surface
and later the version without a yield surface.

7.1 Endochronic Theory with a Yield Surface.

This case was discussed in its essential terms in Section 3.6 and in so far as
the increment d2 is concerned the appropriate flow rule is the same as in classical
plasticity. It is repeated here for completeness. Let

1Il3 - all = soFs (7-1)

* Condition (7-1) ensures that the end point of the stress vector lies on the yield
surface. Then if

(- ).dp > O. (7-2)

plastic deformation will take place. d5 will be given by Eq. (3-219). d p will be given
by Eq. (3-212) or Eq. (3-231) and will be perpendicular to the yield surface at the
end point of 1. However. if
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g)..d _ 0 (7-3)

then the ensuing deformation will be elastic. We note that the equality sign is valid
only to a first order of approximation.

- It is also of interest that endochronic plasticity affords an analysis which without
further assumptions provides a flow rule when the increment of total strain d, is
given. The flow rule is obtained by virtue of Eq. (3-239) and is as follows:

Flow Rule:

If dg emanates from a point on the yield surface and its end point
lies outside the yield surface then plastic deformation will take
place, the increment of the plastic strain path d5 will be given by
Eq. (3-239) and djP by Eq. (3-212). On the other hand, if the
end point of d, lies inside the yield surface then the deformation
will be elastic.

Thus. in analytic terms. if condition (7-1) applies and

(I (- 2). dj > 0 .(7-4)

plastic deformation will take place and dep will be perpendicular to the 'ield surface
at the end point of I according to Eq. (3-212). However if

[- e) de 0 (7-5)

then the deformation will be elastic. Again the equality sign is valid only to a first
order of approximation.

7.2 Endochronic Theory Without a Yield Surface.

This is by far the most difficult case and requires a careful analysis. which is
based fundamentally on the treatment of endochronic plasticity with an infinitesimal
yield surface, given in Section 3.6. We begin with Eq. (3-1). which is repeated below
for convenience:
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• ep

A= p -zs  z'] i dz" (3-1)

0

It follows that in terms of a first order expansion:

A + d2 = + dz - dz M(dz dPZ (7-6)j0 s s

where use was made of Eq. (3-26). If we now set dz 6 in the nomenclature of
Section 3.6 then Eq. (7-6) becomes:

[Zs sdSP de-7

Sdg= p(zs + - dz + M(6) dzz (7-7)

.0

As stipulated in Section 3.6. the functions p(zs) and pl(zs) coincide for all z 6 6 and
therefore

p(zs + 6 - z') = P1 (z S. 6 - z') , 0 < z" < z (7-8)

However in terms of a first order expansion in 6. the right-hand side of Eq. (7-8) is
given by the expression

pz + 6 - z') = PZsz- z') + 6 P1, Zs- z') (7-9)

where p; is given by Eq. (3-218). In view of Eqs. (3-208). (7-8) and (7-9),
Eq. (7-7)1 becomes:

2 + d 61 M(6 PI+ (7-10)

s

where as previously (see Eq. (3-208):
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J z- z) J- dz" (7-11)

It follows that to within 0(62)

z
deP deP

d* =p z(6) z z+6 Zs - z -dz (7-12)

S
.0

However. because pt(zs) is well behaved at the origin, it follows that
Iq

P1 (6) = P1 (0) + 0(6) (7-13)

See Fig. 7.1 where pt(Zs) is illustrated pictorially.

Thus ignoring terms of 0(6 2):

d = p () - 6 . 6 -(7-14)
* zs

where Eq. (3-217) was used. We now make use of the following relations:

P ( 6 ) = P 6- a  (7-15)

M(6) = 61"a/1-a (7-16)

Equations (7-10). (7-14). (7-15). and (7-16) then combine to give the desired equation
in terms of the infinitesimal yield surface s

deP

I + dA =t g dA s- (7-17)
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oi z. = l z -dz

b = PjZ-7 dz'

0

I,

dze

Figure 7.1 Illustration of the functions p(zj), p1(zS), m(zJ) and b(z ).
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whereI

s= p0  ( a/1 )61-a , (7-18)

in accordance with the value derived previously. See Eq. (3-269).
1

The above analysis shows the equivalence of Eqs. (3-1) and (3-268) to within
an error which goes to zero in the limit of 6 = 0. This was already done in Section
3.6 and in that sense the foregoing analysis was repetitious. However it served
another purpose in that it identified the meaning of 6, which as the reader will recall.
was set equal to dz . Thus the above analysis also identified the tensor valued
integrals 2 and b which, as is now apparent. depend directly on the value of 6. This
dependence is shown pictorially in Fig. 7.1. Note that p(z) = pl(zs), dzs _ z and
p'(O) = pi(dzs)+O(dzs),

We state these results formally.

dep  dep  dep

liM p(z - z')- dz = Pl(zs - z ' - dz" + s o- (7-19)
6"0 J dzs

10

I M s a Po (7-20)

where

p1 (zs) = p(z) , 6 I z5  (7-21)

Thus, to summarize, in view of Eqs. (3-268), (7-19) and (7-20). we have

dp

} =t+ so dg (7-22)

lim6+0 s
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and in view of Eq. (7-17)

g + dg = dj+s (7-23)
l im 5+0a z +6

s

In Figure 7.2 we show a plastic strain path (in plastic strain space) in the
presence of three infinitesimal yield surfaces (circles) of different sizes (in stress-
space). The equation of interest is

dep

S 0 o  
+ A (7-24)

assuming that no elastic deformation has followed the last increment da. or. if it has.
a has been restored to its value preceding elastic deformation. Of importance is the
observation that the segment AB. which is the difference between s and A. is by
virtue of Eq. (7-24) in the direction dtP/dz. which is the tangent to the plastic strain
path at its terminal point A. Thus all infinitesimal yield circles tangent at B. each
depending on a different value of 6. must have their center on the segment AB.
This, of course, is based on the fact that s in Eq. (7-24) is infinitesimal and the
expectation that all three plastic strain paths which have evolved on the basis of
Eq. (7-24). each corresponding to a different value of s . converge to the same plastic
strain path as s tends to zero.

These circles are shown again in Fig. 7.3 for clarity. Consider now an
increment of stress dj,+ as shown in this figure, such that

- " > 0 (7-25)

or. in view of the above discussion and follow-ig Fig. 7.2.

d d2 0 (7-26)

a
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dda.

C1,

Figure 7.37 Three infinitesimal yield circles with different radii.
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or, more simply

o dj. > 0 (7-27)

where

-"IO ad (7-28)

de
p

We now let t. be equal to -z and note from Eqs. (7-22) and (7-23) that:
z s6

S

=s 0 Fs + d(2 - P.) (7-29)

Also,

d( s) *= s 0 o

=S 0F; d5 + 0(6 2) (7-30)

since,

d2 
p  p  d2e p

dz 2 0°; s d " 0 os  d " 7

and

IdeP deP d 2e pd =o72)-
dld- J 1- = 0 (7-32)
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Thus combining Eq. (7-29) and (7-30) we find the following result:

o £., = 1 + so(Fs/Fs 5) 0(62) (7-33)

Therefore. in the case where , ° ds > 0. i.e.. dj = dj,.

9-= 9
lia 6 = 0 (7-34)

Thus the plastic strain path is continuous and has a continuous derivative for stress
histories consisting of infinitesimal segments dZ+.

The situation where d5 is infinitesimal but different from zero is shown on a
highly exaggerated scale in Fig. 7.4. Point A denotes the center of the infinitesimal
yield surface when the plastic strain path terminates at a. In this case AB is parallel
to the tangent to the path at a. The point AI is the center of the infinitesimal yield
surface when the path terminates at a1 . In this case the segment AB, is parallel to
the tangent to the path at a1 .

I Consider now a stress increment dZ.. shown in Fig. 7.3. along the line BC1 such
that

(a - M) " ds. < 0 (7-35)

* or

g dg_ < 0 (7-36)

In this case d5 = 0 provided that

IIdtll ' BCr (r = 1,2,3) (7-37)

depending on which infinitesimal yield surface one wishes to consider. However, when

I IdIll > BCr (r = 1,2,3) (7-38)
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aa

Figure 7.4 Infinitesimal yield surfaces corresponding to points a and a1 on the
plastic strain path.
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then d5 0 0 and d2P/dz is along the line A C (r = 1.2,3). One can show by a
simple geometric proof that all lines Ar C (r Z 1.2.3) are parallel.

Hence when inequalities (7-36) and (7-38) apply dtP/dz is in the direction A C
and this direction is also independent of the size of the yield surface. In this case

* the plastic strain path is continuous but its derivative is discontinuous!

To determine the direction C we let the angle between A B and BC be equal
to 0. Thus

dk_

cosp = i iI _ S (7-39)

where Q_ is a generic symbol for the direction of dk. be it d, + or ds. Also let
be the direction of the segment A rC this being the direction of the increment of
plastic strain corresponding to an "unloading" stress increment that satisfies
inequalities (7-36) and (7-38).

We note parenthetically that if a is the angle between the unit vectors C and 9.
then.

cos a - , (7-40)

It follows from the diagram of Fig. 7.3 that

ArB)R + (BCr)n = (ArCr) . (7-41)

But

ABr = ArC r  (7-42)

and

r B = - 2 cosp (7-43)

Thus in view of Eqs. (7-41). (7-42) and (7-43) the following relation, which will be of
central importance in unloading behavior in the context of endochronic plasticity.
follows:
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2 &-2scosp = . (7-44)

Or. using Eq. (7-39)

ns- 0) = (7-45)

Equation (7-45) gives the direction . i.e.. the direction of the plastic strain increment
following unloading, in terms of the known directions 9- and n Note that this
equation is independent of the size of the yield surface!!

On the basis of the foregoing analysis we can now put forth the flow rule for
endochronic plasticity without a yield surface. This rule is based on Eqs. (7-34) and
(7-35) whose validity is independent of the size of the yield surface. These
equations, therefore, remain valid as the radius of the yield surface goes to zero.

Flow Rule:

Let , be the tangent vector to the terminal point of the plastic strain path in
! £P-space. Then if the stress increment dA is such that

d £ > 0 (7-46)

it is denoted by dZ, and is in a "loading" direction, whereupon P.. the direction of
the resulting plastic strain increment, is in the direction of in the limit of
IldIll - 0. Thus

(7-47)

lim )djjj = 0

Therefore when the stress path is continuous -- even though its tangent may be
discontinuous -- the plastic strain path is continuous and has a continuous derivative
at every point.

On the other hand if the stress increment dj is such that

d* < . (7-48)
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it is denoted by dj_ and is in an "unloading" direction, whereupon .. the direction of
! the resulting strain increment, in the limit of Iidtl = 0. is given by the expression:

= - 2ns(* DS)
(7-49)

Ji. IId~Il = 0

We note that in this case the plastic strain path is continuous but its derivative is
discontinuous since now &_ 0 IL

The case when d, is perpendicular to the plastic strain path at its end point.
i.e.. when

d = 0 (7-50)

does not seemingly belong to either of the above two cases. However the direction
when condition (7-50) applies can be obtained from considerations of continuity in the
sense that in this event must be equal to g.. But Eqs. (7-47) and (7-49) satisfy
this condition in their present form and thus their range of validity extends to the

* mcase where condition (7-50) applies.

Recapitulation:

The flow rule of endochronic plasticity without a yield surface in the limit of
* lldall = 0 is:

d, * & 0 :(7-51)

d = -2as (0 2 Ss) (7-52)

7.3 The Value of d5.

Case (a) dj = d+

Combine Eqs. (7-23) and (7-24) to obtain:

soFs & + dk = d, + soF(S5  + d5)!4

= dA + so(F s + Fsd5't+ (7-53)
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But in this case the plastic strain path is continuous and differentiable. Thus:

- = -i d5 (7-54)

Hence we use Eqs. (7-53) and (7-54) to arrive at the following result:

dj = di + soF; & dg + soF ( O 2) (7-55)

It follows, therefore, that

d2 =dA + ; 0 oFsFd (7-56)

since, as previously.

-. -=2 (7-57)

Now use Eq. (3-216) to determine d" in the form given below:

d5" H = dk,•, (7-58)

where

.h
H = pl(o) + soF +F (7-59)

SF s

This equation is reminiscent of Eq. (3-220) however now both s and h are functions
of dz s(= d5/F S) and hence Eq. (7-59) must be solved iteratively. Nonetheless a
conclusion which we will refer to later is that, in view of Eqs. (7-58) and (7-59).
when ds = ds+:

d5 = O(l Idol I) (7-60)
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Case (b) dj = d= .

Again combine Eqs. (7-23) and (7-24) to obtain the expression:

soFs £ =d = d + soFs(5  + d5)&_ (7-61)

In this case the plastic strain path is not differentiable in the sense that R. - t is

finite i.e.. the tangent to the path is discontinuous at 5. However . is given by
Eq. (7-44) which in combination with Eq. (7-61) gives:

soFs + dg dA + s S(5 + d5) (I - 2cos 2p) (7-62)

Note at this point that

dE  = ds cosp (7-63)

where ds = lIdll. Then following the analysis in case (a). Eq. (7-62) reduces to the
following expression:

ds cos= PI(O) + " d5 - P CosP 1- d

FKZ- 2cosl a PO PJ

- 2 ) 1 a i 2-a (7-64)

where Eq. (7-18) was used.

We wish to show that d5 is of higher order of smallness than d51-a whenever
0 < a < 1. Specifically we wish to prove the following lemma.

Lemma.

Given a positive a however small and a positive integer n then there exists a d5
such that

d "l-a = 10 n d5 (7-65)
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12 . - 6Discussion. To fix ideas let d5 = 10- . say. and n - 6. Then d5 = 10-Thus in this case

d5 = O(d5l-a) 2  (7-66)

Proof. The proof is elementary. Take logs of both sides of Eq. (7-65) to find that

d5 = 10- n/a (7-67)

Thus given n and a. d5 is given by Eq. (7-67).

More simply, but in a less informative fashion:

li. [-- a lim de = 0 (7-68)
d5'--O d51 -  d5-O _

We shall consider two cases:

(ii) p= +p(ii) P = 2

where p_ is not vanishingly small. In case (i). and in view of Eq. (7-64), d5 = 0.
In case (ii). and in view of the above theorem

lim ds cosp 2a pk
dr+O -a 0 F (

Hence:

d5 Fs[{2a ds 1/1-a (7-70)

7-18
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Note that in real metals a 0.86 in which case 1/1-a 7.0. Thus

d5 = 0(ds) 7. (7-71)

Thus. d5 is not measurable and. therefore. "zero" for small changes dt in the
- deviatoric stress. However, it is not exactly zero.

In more rigorous terms, if d5 and d5_ correspond to stress increments d + and
di.. such that IIdjjj -iIdA+ l1 = jid21. then:

ir =0 (7-72)
Id =-

Thus. in an operational sense. i.e.. in terms of a measurable d'. given an increment
of stress dj-. then d5- = 0.

7.4 A Computational Scheme for Calculating d .

I The underlying idea of the scheme is that given p(zs), weakly singular near the
origin, we define a function pl(zs) such that

pi(zs) = p(Zs) , zs - 6 (7-73)

1

but

p1 (zs) = finite function, zs  6 5 (7-74)

where the finite function will be defined shortly and 6 is a vanishingly small number.
Of importance is the fact that in the interval [6.z]. p1 (zs) is finite and can therefore
be approximated as closely as we please by a finite sum of exponential terms, i.e..

n -a zs
pj(zs) - Y- Are r S (7-75)

where f is a "tolerance" error.

7-19

• iil ,, I I I I I



More precisely, given a positive number 6 however small, an n can be found
such that Eq. (7-75) applies for all 6 S z.

Thus we define the "finite function" in Eq. (7-74) by extending the
representation (7-75) of pl(Zs) in the entire domain 0 _ z . Hence

-a z
p,(z) = Ar e r s (7-76)

r

for all z.

It was then shown in Section 3.6 that p(z.) can be represented in the entire
interval [O.zsI by the expression:

P(zS) = P(zS) + 6(z) ( (7-77)

where 6(zs) is the Dirac delta function and

S-0 aa po1-a (7-78)

Basically. therefore, s 6(z ) is a correction term associated with the representation of
p(zs) by the Dirichlet series (7-75). As pointed out previously, the representation of

1 p given by Eq. (7-77) introduces an infinitesimal yield surface, with all the
implications associated with such a surface and which were already discussed in this
section.

Now we recognize. however, that the strength s0 of the delta function is known
by virtue of Eq. (7-78) and thus we can represent the 6-function itself to any degree
of accuracy by a single exponential term. Specifically we set

= 7( 70 
(7-79)

where 7 is a suitably large number. Thus:

n -anz -7z
p(z) = e + s 7e s (7-80)

r=1 7 -20
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where s oe 7zs is the "correction term" to the representation of the singular kernel
p(zs) by a Dirichiet series.

The computational significance of Eq. (7-80) will be appreciated better by virtue
of the following example. In practical terms we wish to choose n as small as
possible. In Fig. 7.5 we show a hypothetical example where n was set equal to 3.

The desired error e then determines 6. and 6 determines s which is given by
Eq. (7-78). The constant 7 in Eq. (7-79) should be determined as follows.

Suppose we wish the approximate "Heaviside step function", associated with the
approximate 6-function given by Eq. (7-79). to saturate within 1 percent of its value
at z = 6. Then

1 - e7 = 0.99 (7-81)

Thus. for 6 = 0.001

4.605 4.6 x 103 (7-82)
R7

We may now use the standard formula for calculating dz given in Chapter 10.
namely:

adz2 + bdz + c = 0 (7-83)

where, in the case that the stress increment At is prescribed, we have

C = - dI2(7-8)
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Error e

U ze

Figure 7.5 8as a function of the error e.
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in the following notation:

n+1
A= _ A r(7-87)

r=1r

n+I
2= 7 ar~ (7-88)

r=1

where

A n+ 7(7-89)

an 1 =7 (7-90)
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8. PLASTIC FLOW CHARACTERISTICS OF
PLASTICALLY INCOMPRESSIBLE SOLIDS

In Chapter 7. we gave an analytical derivation of the flow rules of endochronic
plasticity for plastically incompressible solids. As pointed out in that chapter. these

m rules are valid for all continuous stress paths. irrespective of whether the paths are
smooth (differentiable) or not. In this chapter. we give an analysis which addresses
the flow rules from another perspective. namely. asymptotic expansions. The plastic
flow characteristics are determined for the case of an abrupt change in loading
direction in stress space from an otherwise smooth (differentiable) stress path. In
addition, asymptotic methods are also used to explore the direction of the plastic
strain increment vector when the stress state is near an ultimate surface.

The reader may well ask why the analytical techniques of Chapter 8 are different
from those of Chapter 7. The reason is as follows. When the writing of the book
began, all that was known about the flow rules of endochronic plasticity was given in

* the works of Trangenstein and Read 18.1] and Murakami and Read 18.2.8.31 and the
material in this chapter is based substantially on those works, which treat the
asymptotic cases of very small z and very large z near an ultimate surface, as well as
the abrupt change in loading direction from a previously smooth stress path.

During the course of writing this book. Valanis developed the analysis of
Chapter 7. from a geometric perspective, which gives the flow rules for general stress
paths and for all z. Also given are explicit formulae for determining the direction of

l d p corresponding to a stress increment dk. which is not provided in the analysis of
Chapter 8. Thus. the results in Chapter 8 are, in this regard, a special case of those
given in Chapter 7.

We felt, however, that the analysis of Chapter 8 is valuable in that it
corroborates the results of Chapter 7 and gives additional information regarding the
flow rules not contained in Chapter 7. Also, it contains the results of numerical
calculations of plastic strain paths corresponding to some complex stress paths, some
of which have been investigated experimentally in the literature.

8.1. Basic Equations for Deviatoric Response

In this chapter. we consider the system of equations which govern the deviatoric
behavior of a plastically incompressible endochronic solid. These equations were given
earlier in Chapter 3 (see Eqs. (3-12) to (3-16)) but are repeated below for easy
reference:

8-1



U|

= - dz (8-1

.0

dzs = d (8-3)
S

d2

d = d2 - (8-4)

In addition, the following form of the weakly singular shear kernel given in
Eq. (2-111) is adopted

e-PZ
p(z) =po (8-5)

Nz

where P and p are positive material constants and 0 < a < 1. As shown in
Section 3.2.6 (see Eq. (3-53)). this form of the kernel function leads to an ultimate
(failure) surface. In the remainder of this chapter, the subscript s will be suppressed.
and any reference to the intrinsic time z will be tacitly understood to refer to z5 .

The plastic flow properties of the model described by Eqs. (8-1) to (8-5) are
explored first for the case in which there is no deviatoric hardening. i.e.. F = 1: ass

shown in Section 3.2.6, this leads to an ultimate (failure) surface whose trace in the
- deviatoric (r) plane is a circle. Finally, the plastic flow properties of the model for

the case in which F depends upon a and J'. the third invariant of the deviatoric
stress tensor, are considered; such a form of I is characteristic of geomaterials, such
as soils, rocks and concrete, and leads to an ultimate (failure) surface whose trace in
the ir-plane is non-circular.
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8.2 Plastic Flow Properties in the Absence of Hardening (F = 1)

Consider the system of equations described above and set F = 1. which
corresponds to no hardening. In this section, a number of features of plastic flow of
this model are established. First, analytic solutions are obtained for two limiting
cases of response to smooth stress paths. Next, the plastic response of the model to
an arbitrary abrupt change is the loading direction in the fr-plane on an otherwise
smooth stress path is examined analytically and a theoretical solution is obtained.
using asymptotic methods, for the plastic compliance as a function of the new loading
direction. Finally, the response of the model to a variety of complex stress and
complex strain paths is explored through the use of numerical methods.

Note that, for F = 1. Eq. (8-1) may be written as:

z

a f p(z - z')&(z')dz" (8-6)

0

where £, a unit vector, was defined earlier in Eq. (7-28) as:

d5 (8-7)

Also, by making the change of variable

y = z - z, (8-8)

and introducing the form of p(z) given by Eq. (8-5). Eq. (8-6) becomes

! Iz

2 = PO-p - (z - y)dy (8-9)

.0

which will be used in the sequel.
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8.2.1 Small z Near the Origin of the Devatoric Plane.

To explore the plastic flow properties of the above model for small z near the

origin of deviatoric space, we begin by differentiating Eq. (8-6) as follows:

= p(z)g(O) J(z - y)dy (8-10)
.0

where the superscripted prime denotes differentiation with respect to z. Assuming

smooth strain paths. £ and ' can be expanded in Taylor series as follows:

g() = ;(z) - zn & (0)
n=1

m cz - y> = = za o.
InOy ! (z)

Substitution of Eqs. (8-11) into Eq. (8-10) leads to the expression:

= p(z)P(z) - . z p ~z) ,(o) . y(z) Py)dy
n = 1 .

(8-12)
: (-l)nn~ n!I z

&n+lz4) ynp(y)dy
~on=1 n
10

For small z. p(z) varies as z'a; thus, we can write:
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z np(z) = o (Zn-a)

p(y)dy - O~zl-a) (8-13)

0

rz
ynp(y)dy = Oz"n l-a)

0

Hence, Eq. (8-12) can be expressed in the form:
d2

I! - p(z)& + ozZ- (8-14)

which shows that for small z (z << 1). dj/dz and are coaxial, since 0 < a < 1.

In view of Eq. (8-7). it therefore follows that dep and dk are coaxial for small
1 z. This result illustrates one of the unique features of the endochronic theory which

sets it apart from classical plasticity. namely. that in the endochronic theory plastic
flow develops immediately upon application of load, while in classical plasticity, plastic
flow does not occur until after the stress state has reached the yield surface.

8.2.2. Large z Near an Ultimate Surface.

Let us consider a stress path which is arbitrary for z < z , but at z it
monotonically approaches the ultimate surface. For z > z, the plastic strain path,
and hence & will be smooth and simple during the recent past {z - y 10 _ y y }.
where y is a characteristic of the material such that for y ym" e'Py is negligibe.
Under tIese conditions, we wish to consider the constitutive expression for Z given by
Eq. (8-9). namely:
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.0 
a

For a large class of materials, including metals and geomaterials, it has been
found through experience in applying the theory that , >> 1 (typically on the order
of 103 to 104). For such large P. the major contribution to the above integral occurs
near y = 0. Because of the smoothness of the tp-path for z > z . the function
g(z - y) can be expanded in a Taylor series about y = 0 to give: 0i1 2

- y) & z) - y '(z) + y2  z)- ... (8-16)

However. due to the large value of P. &(z - y) can be represented by the first few
terms of the above series over {0 < y < yJ} where e- Y is not negligible. Therefore.
Eq. (8-15) can be expressed as:

Pz

= e0P [&(z) - y '(z) + ... ]dy + O(e-Pz) (8-17)
0 ya.0

Applying Watson's lemma* to the integral and performing the integration, one finds
that

g = o[ (z)1, -a) - 9'(z)r(2 - a . [ l + Oe - z) , (8-18)

1  -a p2-0I~ l

where r(...) denotes the gamma function. Upon introducing Eq. (3-53). with an
appropriate change of notation). together with the relation r(n+l) = nr(n). Eq. (8-18)
can be rewritten in the form:

so* c&,+ I c2 (2 -, . 1 (3 2 a) (I3 - a) .... .. ( _9

where

-aP- (8-20)

See. for instance. Reference 18.41.
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* I ! !i I I n m= , , . . . . . .

Let us take the Euclidean norm of both sides of Eq. (8-19). and neglect terms of
O(p-2) and higher compared with unity: this results in the expression

* JI =si- 2 i. ~2-J( (8-21)

where, since g is a unit vector, we have that = 0. Inasmuch as I I 1I * s.
as the ultimate surface is approached, it follows from Eq. (8-21) that " * 0 also.
Returning to Eq. (8-19). and neglecting terms of 0( P2). we have:

A- cg (8-22)

As the ultimate surface is approached. g" + 0 as shown above, so that Eq. (8-22)
reduces simply to

dep

2 = SO Tz (8-23)

where use has been made of Eq. (8-7). This expression shows that as the ultimate
surface is approached. dtp becomes coaxial with s. Therefore. since the ultimate
surface of the model considered here cuts the ir-plane in a circle, the vector d P

becomes normal to this surface as Z approaches the surface. This feature of the
* theory is illustrated in Figure 8.1. Later. in Section 8.3. the plastic flow properties of

the version of the model which exhibits a non-circular ultimate surface in the W-plane
are explored.

To show the relationship to classical plasticity. let us rewrite Eq. (8-23) as

P = -is (8-24)

where the superposed dot denotes differentiation with respect to time. Upon recalling
from Eqs. (8-2) and (8-3) that for F = 1:S

dz = H~d2pII

when the stress state is very close to the ultimate surface, we can write:
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Stress Path

Failure

Figure 8.1 Stress path in the f-plane, showing becoming coaxial with s as
failure surface is approached.

8-8



so (8-25)

Eq. (8-24) can then be expressed in the form:

*P =(8-26)

where

S(8-27)

Equation (8-26). with I defined by Eq. (8-27). is the well-known Prandtl-Reuss
equation of classical plasticity [8.51. Therefore, for smooth limiting behavior in the
neighborhood of an ultimate surface whose trace in the i-plane is a circle, we find
that the endochronic theory leads to the same plastic behavior (or flow rule) as
classical plasticity. In general, however, the plastic flow properties of the endochronic
theory differ substantially from those of classical plasticity, as will be demonstrated in
the following section and in Section 8.3.

8.2.3 Abrupt Change in the Loading Direction.

Important insight into the constitutive properties of complex nonlinear constitutive
theories can often be obtained by examining their responses to abrupt changes in
loading direction from an otherwise smooth loading path. In this section, the
response of the endochronic model with F = I to an abrupt change in loading
direction is analyzed, using asymptotic analytic methods,

Consider Figure 8.2. which depicts a stress path in the i-plane that is smooth
up to some point P. At P, an abrupt change in the loading direction occurs for
subsequent loading. In the following analysis. the tangent to the smooth stress path
at P is denoted by 1. and the arbitrary new loading direction is represented by .

where both t and t are unit vectors. The value of the intrinsic time at P will be
denoted by z. The stress path is therefore smooth for 0 _ z _ zo and, at z = z0.
it suddenly changes direction so that for z _ z, the deviatoric stress increment d
lies in the new direction b. Here, z and z+ denote the left and right neighborhood
values of z. respectively. 0 0

8-9
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Stress Path P
jt

Figure 8.2. Smooth stress path in the 7r-plane. showing the unit vectors P-1
~and I and the angles 0, and ~
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Let us now introduce the notation

+ Az) - (z) (8-28)

Using Eq. (8-9) to evaluate the right-hand side of this expression, we obtain:

Aze'-Py gIo+Az-Ydy+p e-Py z z
A (o}--po 7 Cz" z-,]d •Po 7 (° M '  - P-(z°- Y)ld

(8-29)

z 0 +Az Az

P0Ja 1-- (zo + Az - Y)dy - p0J -i-£.z yd

z 0
* 0

Let us now consider the form that this equation takes as Az -0 0. We first note that
along the smooth portion of the stress path. Eq. (8-9) may be differentiated to give
at z = z

z
ds 0z°P

dsf = Po (0) P e &'(Z - y)d, (8-30)

-z- 0  a a0 Y
0rZ 0 0yO z

Also, since

* z Az-y)- (z ° -yJ = z °-yJ z , (8-31)

we can write

z 0

S[ z + Az - y) -y (z° - y)]dy = /oAz dzz (8-32)
y ZAz o
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In addition. it follows that
iz +Az

0o , e-PZ0& Z z - Y) P ,z° .(0) Az (8-33)

z
Jo

00

Upon introducing Eqs. (8-32) and (8-33) into Eq. (8-29). the following expression
results:

'Az

= Az -j 0  - ao [I o z0  Az - y) - &(zo - y]]dy (8-34)

z 0

Consider now an asymptotic expansion for L(z + Az); this should be expressed
in terms of two linearly independent vectors, one of which must be t. For the other

* vector. & and t are available, since they are both linearly independent of b. If P- is
selected for this purpose, as was done by Trangenstein and Read (8.11. P is restricted
to be coaxial with t. a condition which is not correct for stress states near the
ultimate surface (see Section 8.2.2). Therefore. the appropriate vectors to use in the
asymptotic expansion for P4z ° + Az) evidently are t and t.

On this basis, the following form for the asymptotic expansion of P- is adopted:

&(Zo+ Az) - £.Zo) =- a +1Azu + . + p1AzP] (8-35)

where a1. Po. u and p are constants. Furthermore, it will be assumed that

PO + PlAZp > 0 for Az > 0 (8-36)

Upon substituting Eq. (8-35) into Eq. (8-34). and using the following expansions for
the integrals:
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Az
e-Py (Az - a) (1 + u) Azl+u-ay z a ry)Udy = (2 + u -a)
o z

0

Az

Jy zy I 'z8-37)

0

Az

eI P (Az -y) Pdy r= - a)r (1 + v) Az I~p-a
JY a r(2 +p-a

* 0

it follows that:

t dzjj r (1 - a) ri a u - a) i1ou-a]At(zo) = zII dz II Z- - a 1p0  F(2+u - a) Az

0

(8-38)

+ PoPo Az1-a r(1 - a)r(1 + p) 11 -(, a Ao r"(2 + p - a) Azl+-

where use has been made of the relationship

zJ Zd (8-39)

0 0

The new stress increment. A., at the point of the abrupt change in loading direction.
is assumed to be in the arbitrary direction t. As a result, the coefficient of t in
Eq. (8-38) must vanish, which leads to the following conditions:
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u a

= LH r(2)/{P~r(l -amr1 a)) Z-(8-40)

0

From Figure 8.2. we can write

cosa =

cost = (8-41)

cost =

Also. since g is a unit vector, it follows that

0i(z + Az)112 =1(8-42)

Upon substituting Eqs. (8-35). (8-40) and (8-41) into Eq. (8-42). one obtains the
result:

* 1 ~ P0 (P0 (P0 2cosO)} - 2 a1 (cos9 pcos)Aza

(8-43)
" 2/1 (cos Po)Azp fAz2p - 2a 1p 1cos#Azap.

Inasmuch as the direction b is arbitrary with respect to _(zo). there are accordingly
three Tanges of 0 that must be considered. But before doing this, let us note that

for the case of no hardening (Fs =1) considered here, it follows that dz = I Idgll.
Accordingly. we can write

=- Jim -z 1 
(8-44)

Az-+O 
Az

0 Z8-
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Consequently. a finite value of dj/dz at z+ implies plastic response, while an infinite
0value indicates purely elastic response.

(i) COSO > 0.

* The zero order terms in Eq. (8-43). together with the non-negative condition
from Eq. (8-36). require that

Po = 0. (8-45)

The next higher order terms in Eq. (8-43). together with Eq. (8-40a) imply that

p- u = a

(8-46)
P= a, cosO/coso.

Upon substituting Eqs. (8-45) and (8-46) into Eq. (8-38). we find that

= cose II dg _ (8-47)

z z

0 0

The finite value of dj/dz at z+ implies plastic response for this case.0

1 (ii) cosO = 0.

In this instance, the zero order terms in Eq. (8-42) must satisfy Eq. (8-45).
while the next higher order terms require that

-2a Cos za + 2 Az2 p = 0 (8-48)

As a result.

u 2= (8-49)

= (2a 1 cosO) 1/2
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which on substitution into Eq. (8-38) leads to the result

d2'
z) ,(8-50)

!n zo
Z0

implying that the response is purely elastic.

(iii) cosO < 0.

The zero order terms in Eq. (8-43) must satisfy the condition

L = - 2 cost. (8-51)

while the next higher order terms require that

p = a. (8-52)

i Inasmuch as p 0. we obtain in this case the condition (8-50), implying that the
response is purely elastic.

The results from the three cases considered above can be conveniently expressed
in terms of the incremental plastic compliance, CP . as follows:

pp=
d2~

cP = - =j (8-53)

0 , - r/2

where

Idsl
7(ZO) = cos6 jJdj1 (8-54)

z
0

Equation (8-54) reveals that Cp is a continuous function of the angle € and is zero
for all stress increments normal to -P. as well as for those which have a negative
component with respect to at z. 0 This is illustrated in Figure 8.3. where the
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Figure 8.3. Variation of incremental plastic compliance with angle .
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variation of the dimensionless incremental plastic compliance. CP7(zo). with is
shown. Note also that. through 7(z ). Cp depends upon the angle e between the unit
vectors g and t and that this angle depends upon the plastic strain history.

It is emphasized that Eq. (8-53) was derived on the basis of an assumed abrupt
change in loading direction from an otherwise smooth stress path. To explicitly
define CP. one must know. at the point of abrupt change in loading direction, the
angles # and 0. as well as I Id,/dzl I at z-. all of which depend upon the plastic

0strain history. In general. to evaluate these quantities requires that the governing
equations of the model be integrated along the stress path and. due to the nonlinear
nature of the equations. this can be accomplished only through numerical methods.
which are treated in the following section.

In the case of a smooth stress path, i.e.. no abrupt change in loading direction,
Eq. (8-53) furnishes no useful information. In this case. t is coaxial with t so that

-= 0 and e = 0. Upon introducing these conditions into Eq. (8-53). and recalling
from Section 7.2 (Eq. (7-46)) that cosO 0 for loading, it follows that

CP = 1d2 11 1(8-55)

which is simply the definition of Cp adopted in Eq. (8-53).

For proportional loading. #- is coaxial with t so that l - . In this case. it
can be shown that Eq. (8-53) reduces to the expression for CP given by Trangenstein
and Read 18.11. who assumed a form of asymptotic expansion for ?(z + Az) which
inadvertently forced A to be coaxial with t.

8.2.4 Complex Stress and Strain Paths.

The response characteristics of the endochronic model for a number of selected
complex stress and strain paths in the ir-plane are considered in this section. The
selected paths provide insight into the plastic flow properties of the model for paths
that lie between the two limiting cases treated analytically in Sections 8.2.1 and 8.2.2.
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Because of the nonlinear nature of the governing equations, numerical methods are
used to integrate the equations along these paths and, for this purpose. the
incremental numerical method described in Chapter 10 was used.

The specific endochronic model adopted for the studies described in this section
had the following material properties: The shear modulus was taken to be
G = 38.61 MPa. while the kernel function p(z) was described by three terms in the
series (3-258). with the following values of a and R:

rr

(a1 . a2. a3) = (0.767. 1.15. 2.75) x 10( (8-56)

(R. R2. R 3) = (0.46. 2.2. 5.9) x 102 GPa

Let us consider, first, a complex strain path in the deviatoric plane which has
the triangular form shown in Figure 8.4. The path starts at t = Q. proceeds
outward along the e3 -axis, and then turns abruptly to follow the triangular trajectory
in a counterciockwise direction. The endochronic model described above was driven
around this complex strain path and the corresponding stress history was predicted.
Figure 8.4 shows the deviatoric stress vectors predicted by the model at selected
points along the triangular path. Note that at the turning points where a sudden
change in the direction of the strain increment Al occurs, the stress vector changes
smoothly, gradually approaching coaxiality with the strain increment.

The response of a clay soil to a prescribed strain path qualitatively similar to
that shown in Figure 8.4 has been studied by Pearce [8.6]. using a true triaxial
device. The results from this study are depicted in Figure 8.5, where the deviatoric
stress vectors measured during the test at selected points along the strain path are
shown. As a comparison of the two figures will reveal, the predicted and measured
stress vectors at points along the prescribed strain paths are qualitatively very similar.
It should also be noted that the response of a classical plasticity model with
hardening to the complex strain path shown in Figure 8.4 was also studied
numerically and produced a similar variation of the stress vectors along the path.
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Substantial differences between endochronic theory and classical plasticity become
apparent, however, when prescribed complex stress paths are considered. Figure 8.6,
for example. shows four different circular stress paths which intersect the origin. The
model was driven around each of these paths and the deviatoric plastic strain
increment vectors Alp were calculated for specified increments of I IAs~/a~ll. The
results are depicted in Figure 8.6. where the predicted vectors Ae are shown at
selected points along the stress paths. Figure 8.6(a) shows two small circular stress
paths that are close to the origin of the i-plane. For the path with the smaller
radius, the vectors Alp and At are essentially coaxial, which is consistent with
Eq. (8-14) given earlier. For the other path. Alp is coaxial with At, near the origin.
but increasingly becomes more radial in direction as failure is approached: this feature
of the model is more clearly illustrated in Figure 8.6(b) by the stress path which
intersects the failure surface. Here, we see that Alp is tangent to the stress path
near the origin, but becomes increasingly radial in direction, and therefore approaches
coaxiality with I as failure is approached. Also, as the stress state becomes
increasingly closer to failure. AP + a. The results described above, which were
obtained with the incremental numerical procedure, are fully consistent with the two
limiting cases treated in Sections 8.2.1 and 8.2.2.

Figure 8.7 shows several stress paths consisting of two linear segments in the
i-plane. The paths begin at the origin of the i-plane, proceed outward along the
s-axis and then turn abruptly to follow linear trajectories which make angles of
3 degrees. 60 degrees and 90 degrees with the s3-axis. The only difference between
the figures (a) and (b) is the location of the point on the s3-axis where the paths
veer away from this axis. In Figure 8.7(a). the second segment begins at s3 = a0/6
while in Figure 8.7(b) the second segment begins at twice this distance from the
origin. s3 = a./3. The vectors Aep predicted by the model are shown at selected
locations along the second segment of each path. On the first segment. /ep is
parallel to the s3-axis and is not shown to avoid overcrowding the figure. A
comparison between the vectors Aep shown in the two figures reveals that the effect
of having the second segment begin closer to the failure surface is to increase the
radial component of Aep along the initial portion of the paths. In Figure 8.7(a). the
Aep vectors initially are almost tangent to the stress path while in Figure 8.7(b) they
have a significant radial component. Ultimately. the vectors A p tend toward
coaxiality with the stress vector A as the failure surface is approached.
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Next, let us consider the stress path shown in Figure 8.8. which has a circular
segment which is near to. and concentric with. the failure surface. The stress path
begins at the origin of the r-plane. proceeds upward along the s 3-axis and then
follows the circular trajectory in a clockwise fashion. As before, the vectors Ae
predicted by the model are shown at selected locations along the circular path. Note
that these vectors are nearly perpendicular to the stress path and nearly coaxial with
the stress vector. A. Again. these features of the model are in full agreement with
the behavior predicted in Section 8.2.2 for the limiting case of response near a failure
surface.

Finally. Figure 8.9 shows a complex stress path in the r-plane which consists
first of radial loading along the s -axis followed by a triangular trajectory that is
traversed in a counterclockwise direction. Again. the vectors Ae predicted by the
model at selected locations along the triangular portion of the stress path are shown.
Note that after an abrupt change in the loading direction (at the corners of the
triangle), the vectors AIp greatly diminish in magnitude, reflecting tht unloading that
is occurring. Also, as the stress path approaches the failure surface, the vector Aep

becomes increasing coaxial with the vector s. in agreement with the analytic results
presented earlier in Section 8.2.2.

8.3 PLASTIC FLOW PROPERTIES WITH HARDENING

In the preceding sections, we explored the plastic flow properties of the
endochronic model for the case in which there was no shear hardening. i.e.. F = 1.s

By virtue of the form adopted for the shear kernel p(z ) in Eq. (8-5). it was noted
that when F = I the resulting model exhibits an ultimate surface which intersects
the r-plane in the form of a circle. While such an ultimate surface provides a
reasonable representation for a number of materials, there is also a large class of
materials of considerable practical interest for which it is not appropriate: this includes
rocks, soils and concretes, for example. For these materials, the ultimate surface
depends upon the hydrostatic stress a. and its trace in a x-plane is. in general, non-
circular.

The shear hardening function F is responsible for defining the shape of the

ultimate surface exhibited by the endochronic model. For the ciass of materials noted
above, the ultimate surface depends on a and on the third inva.lant of the deviatoric
stress tensor. J3. Therefore, to describe the behavior of these materials within the
endochronic framework, F must have the general form:

s
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F = s(0'3) (8-57)

where

J3= det(j) (8-58)

The notation det(j) refers to the determinant of the components of Z.

In this section, the plastic flow properties of the endochronic model defined by
Eqs. (8-1) to (8-5) are explored for the case in which the shear hardening function
has the form of Eq. (8-57). As before, we will restrict attention for analytic
convenience to the case in which deformation takes place at constant hydrostatic
stress. i.e., a = ao. The developments presented in this section are originally due to
Murakami and Read [8.31.

The system of equations that we consider in this section consists of Eqs. (8-1)
to (8-5) with the shear hardening function F having the form indicated by
Eq. (8-57). Therefore, for deviatoric deformation at a = a0 . it follows from Eq. (8-2)
that

d2p

T- = &(z) Fo(aJ 3) (8-59)

where, as before:

d~tp

d5 -(8-60)

and the subscript s has been suppressed. Upon introducing Eq. (8-59) into Eq. (8-1)
and using the kernel function defined by Eq. (8-5). one may write:

'z

= Po (z) F[ao,J 3 z)]dz (8-61)0 Cz - z') J3(

.0
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This equation can be rewritten in the form:

" &(z - y) F[ao,J 3 (z - y)]dy (8-62)

by making the change of variable y = z - z'.

8.3.1 Small z Near the Origin of the Deviatoric Plane.

The analysis for this case proceeds in the same manner as that given earlier in
Section 8.2.1 and. because of this. the details will not be repeated here. The final
result is that the behavior has the same form as Eq. (8-14). namely:

ds
-d[ P(19 0G (8-63)

Therefore. as one might expect, the behavior at a considerable distance from the
ultimate surface is independent of F . Equation (8-63) reveals that for small z
(z<<). dj/dz and & are coaxial, whicA implies that dZ and dep are also coaxial.

1 8.3.2 Large z Near an Ultimate Surface.

Let us now explore the asymptotic form of Eq. (8-62) as the ultimate surface is
approached, following the same procedure described earlier in Section 8.2.2. For this
purpose, we consider a stress path which is arbitrary for z < z . but at z
monotonically approaches the ultimate surface. For z > z. the plastic strain path
and hence & will be smooth and simple during the recent past {z - y 10 y , y
where y is a characteristic of the material such that. for y _ y. e" Y is negligime.
When P >> 1. which appears to be true for most materials, thne major contribution
to the integral in Eq. (8-62) occurs near y = 0. In view of the smoothness of the
IP-path for z > z. we may expand the function a(z-y)FJaO.J 3(z - y)] in a Taylor
series about y = 0 to give:
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9r(z - y)F[aoJ 3 (z - =(z)F[OoJ3()]
(8-64)

K 8F . 31
- y'" (z)F [o J3 (z)] + &-(z)a J 3

Because of the typically large value of p. ouly the first few terms of the above series
are needed over {o 5 y 5 y } where e X is not negligible. With this in mind.
Eq. (8-62) can therefore be wMiten as:

A 0 = [POzFaoJ 3 (z)] -jo Y 10P

0o (8-65)

&~ 0 z ]-j ...Id
Upon applying Watson's lemma (see Reference [8.41. for example) to the integral and
performing the integration, it follows that

= poCz)F[c'J 3 (z)] - {ZsFsZs)} ( -2 - a )

(8-66)

+ ([P3-a)] + OeP S)

Since we have found that for most materials P >> 1. the first term on the right-
hand side of the above equation dominates. In this case. it follows from Eq. (8-66)
that. near the ultimate surface. I is coaxial with and hence with d~p. The model
therefore exhibits a plastic flow rule near the ultimate surface that is of the Prandtl-
Reuss type. Because of the assumed dependence of F on J the ultimate surface3'

does not, in general, cut the r-plane in a circle. As a result, the plastic strain
increment dt will not, in general. be normal to the ultimate surface, as shown in
Figure 8.10. Near the ultimate surface, then. the model exhibits plastic behavior that
is similar to what is termed non-associated flow in elastic-plastic theories.

8-29



6p

n

Stress Path Ultimate
Surface

SS2 S3

Figure 8.10 Trace of ultimate surface in the -plane showing the orientation
of the vectors jP and L for a stress state near the surface.
Here a is the normal to the ultimate surface in the neighborhood
of £.

8-30



8.4 Consistency Between Eq. (8-53) and Eqs. (7-45), (7-57).

In this section. we wish to show that Eqs. (7-45) and (7-57) are, respectively.
identical to the upper and lower branch of Eq. (8-53).. as pointed out in Chapter 6.
To show the upper branch we recall Eqs. (7-11) and (7-24) and set F = 1, toS
obtain the constitutive relation

'zdgp  d p

= 2o . J pl(z - z') dz , (8-67)

0

in view of the fact that in Chapter 8. z S

We also note the condition

=1 dP =1 (8-68)

and the relation

d2 2P  d2p

.z *m =o 0 (8-69)dz2 *dz

which is obtained by differentiating the relation (8-68). Thus differentiating
Eq. (8-67) with respect to z. using Eq. (8-69) and noting Eq. (7-59) in the light of A
F = 0. we find that

S

H =z (8-70)

where note is taken of the fact that £ = dep/dz.

Thus

H d £ IzI (8-71)
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U I55 - *rI I

I
Therefore. if z is the terminal point of the plastic strain path prior to the imposition
of the stress increment dE+. then

I d'l I
0

H = cosG d z (8-73)

0

Hence H = 7. We now recall Eq. (7-45) and note that

d2.iidA lj -(8-74)

Thus Eq. (7-45) becomes:

dz H = Id+l j " = 111d,1lcos (8-75)

Hence:

I kP = 1d1 dz -cosO (8-76)
P -- I Id I IIdg ll Hz

0

so that

cp= cos. (8-77)7(Zo)

which was the relation to be proved for the upper branch of Eq. (8-53). The lower
branch is obvious.
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9. PLAIN CONCRETE

Plain concrete, when subjected to general loading paths which drive it into the
nonlinear inelastic regime. exhibits a rich variety of complex constitutive features which
in the past have made it a very difficult material to model mathematically. Some of
the salient and complex response features that are observed for this material include
volume changes due to shear in the presence of a fixed hydrostatic pressure. influence
of hydrostatic pressure on deviatoric behavior, hardening due to compaction, hysteresis
and stress-path dependence. Furthermore. if the concrete experiences significant
cracking in preferred directions, there is the added complexity of material anisotropy.

In recent years, a variety of nonlinear constitutive models have been proposed in
the literature for plain concrete. Despite this. there is still no general constitutive
model available which is capable of realistically describing the entire spectrum of
concrete behavior, including both pre- and post-cracking response. In this chapter. we
illustrate the application of the endochronic theory to plain concrete and show the
remarkable capability that it has for predicting the observed behavior of this material
for stress histories which do not produce significant cracking. The model has been
calibrated to laboratory data for a medium strength plain concrete. and proof-tested
against other data involving complex stress paths from the same laboratory
investigation.

In the following sections of this chapter. details of the model are given and
procedures for applying it to the data of Scavuzzo.et al. [9.11 are described. The
results from numerous proof-tests conducted to explore the predictive capability of the
model are shown to illustrate its ability to describe the observed behavior of plain
concrete when driven around complex stress paths. The model discussed in this
chapter was )irst introduced and applied to plain concrete by Valanis and Read [9.21.

9.1. The Model.

The basic equations of the endochronic model considered in this chapter were
given earlier in Section 4.1 but are repeated below for convenience. Under the
assumption of small strains and isothermal deformation, the governing equations for
the model are as follows:

zs: dep
A P(zs- z -) dz"

0
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= z J.(zH - dz- (9-2)Z- dP z-
0

dep = de - dA/2/ (9-3)

di p = de - dcal( (9-4)

dz2 = I~dePH12 k2 I dePI (5

dz-~ dz dz d (9-6)S F ~ dH-kF

where the notation has been defined earlier. Here, the kernel functions are taken in
the form:

a zr s
p(zs) = T-Ar r (9-7)

r

O(ZH) r-8 r o- PrzH  (9-8)
r

where Ar. B a and Pr are all positive and finite. In the present application of the
model to plain concrete, we found that very satisfactory results can be obtained by
taking only the first two terms in the above series.

The function F H reflects the effect of compaction on hydrostatic behavior and.
accordingly, is taken to depend on the plastic volumetric strain EP. The function F .
on the other hand, accounts for the effect of the hydrostatic stress o on shear
behavior and failure. As a result. F is responsible for the form of the trace of theS
failure surface in the i-plane. For concrete materials, in general, the trace is nearly
triangular at low pressures and becomes increasingly circular with increases in
pressure. The function F . then. will in general depend upon both o and the thirds

invariant of the deviatoric stress tensor. J.

9-2



I
In the application of the model to the data of Scavuzzo, et al. [9.11. the model

predictions are not likely to be sensitive to the fine details of the failure surface, since
the response regime of interest is not in the close proximity of the failure surface.
Because of this. and to simplify the model. we will assume in that which follows that

I F depends only on a. Later on. in Section 9.5. we will show how a third invariant
failure surface can be easily incorporated in the endochronic model presented above:
we will also calibrate the failure surface to failure data on plain concrete.

The model described above is rate-independent and isotropic in the sense
discussed in Section 5.1. It portrays, as we shall show. the major features of the
nonlinear, inelastic behavior exhibited by plain concrete over the stress range when
significant cracking does not occur. These features include volume changes due to
stress in the presence of a fixed hydrostatic stress, the effect of hydrostatic
compression on deviatoric behavior, hydrostatic hardening due to compaction.
hysteresis and stress-path dependence.

Finally. we note that the above model exhibits only compaction when there is
shear in the presence of a fixed hydrostatic stress. This is consistent with the data
of Scavuzzo. et al. [9.11. who found that the plain concrete they studied exhibited

UI only compaction for all of the stress paths considered, none of which produced
significant cracking. When cracking becomes significant, dilatancy can be expected to
occur and it can be accounted for within the basic endochronic framework given above
by introducing a more general form of Eq. (9-2). as described in Section 4.1 (see
Eqs. (4-16) and (4-17).

9.2 Application to Plain Concrete Data.

To apply the model described above to plain concrete requires the determination
of the functions p(z). O(zH). FH(P). F(a). the shear-volumetric coupling parameter k.
and the elastic mocfuli. K and p. Forthis purpose. we rely heavily on the analytic
developments given earlier in Sections 4.2 and 4.3. With these, the model can be
fitted in a direct manner (without the need for iteration or optimization) by using only
a small portion of the data presented by Scavuzzo. et al. [9.1]. The data used for
this purpose include a virgin hydrostatic curve, shear responses at several different
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1 fixed hydrostatic stresses, and a triaxial compression ,Jlure envelope covering a range
of confining pressures. The specific data from Reference [9.1] used to fit the model
are shown in Figure 9.1. In this figure. as well as in the subsequent discussion. r"
and a denote, respectively, the octahedral shear stress and octahedral normal stress.o
while 70 and e are. respectively, the octahedral shear strain and octahedral normal

I strain.

The functions 0 and FH are determined from the hydrostatic compression data
shown in Figure 9.1(a). where the data for e >3x10 are assumed to be linear.
Then F H. whose form in the linear range is given by Eq. (4-45). is determined by
evaluating P from the linear portion of the hydrostat. in accordance with Eq. (4-46).
The function 0, which is represented by the series (9.8). is determined in accordance
with the approach described in Section 4.2.2. The hydrostatic compression curve
actually used for this purpose is shown by the solid line in Figure 9.1(a). Also
depicted by a dashed line in this figure is a specific hydrostatic curve from the data.
An examination of the purely hydrostatic portion of the many tests with complex
strain paths reported in Reference 19.1] revealed that the dashed curve appeared to be
too low, while the solid line provided a more accurate portrayal of the hydrostatic
behavior. In this manner, the following material parameters associated with the

i hydrostatic component were determined:

K = 2.1 x 103 ksi , = 64.8
B= 1.55 x 103 ksi , =570 (9-9)
B2 5.87 x 10 ksi P2 2.224

where

= B r e- zH (9-10)

r=1

and

FH =1 +p 6 p  (9-11)

tA
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Turning now to the function p(z ). it was noted in Section 4.3 that the most
direct way of determining p(zs) is from data on shear behavior under zero hydrostatic
stress. However. this case was not investigated experimentally and, even if it had
been. it would be of little use since the inelastic behavior of plain concrete under zero
hydrostatic stress is due more to cracking than plastic flow. Therefore. p(z ) was
determined from the curves of r vs 7 depicted in Figure 9.1(b). An inspection of
the data reveals some apparent discrepancies. According to the trends of the plain
concrete data reported in the literature, the initial slope of typical r 0 vs 7 curves
increase with confining pressure, and the corresponding -ro vs 7 curves tend to lie
above each other -- not intersect -- as the confining pressure increases. The
r vs 7 curve at a confining pressure of 8 ksi, which was selected for fitting the
parameters. did not follow this pattern. There is the expected scatter in the data but
the degree of scatter is not known. In view of this. we used our best judgement to
construct a curve (close to the measured one) which provides a description of the
shear response at a = 8 ksi that is consistent with the expected trends. This curve
is shown by a solidoline in Figure 9.1(b).

The determination of p(z ) hinges on knowledge of the shear modulus # and the
shear hardening function F . Yfhe former is necessary for establishing the dependence
of -r on 7/P when r as a function of 7 is known. The latter is essential because of
the dependence of the r vs yP curve on F . as is apparent from Eqs. (4-110) and
(4-149). In addition, it is necessary that the coupling parameter k be known.

Let us consider, first, the shear modulus. An inspection of the data given in
Figure 9.1(b) shows that the slopes of the 7- vs 7o curves at the points of unloadingO.

are an increasing function of the shear strain 7o at unloading. Inasmuch as the
model stipulates that the initial unloading increment is purely elastic, it follows that
the shear modulus # is not a constant. Its variation with the state of deformation
can be found from the initial slopes of the loading and unloading curves given in
Figure 9.1(b).

Attempts were made to correlate the values of 2# determined in this manner
with various deformation variables, such as the plastic volumetric strain EP. the total
volumetric strain e. the total octahedral strain 7. and the plastic octahedral shear
strain 7P. The latter two provided the best correlation, but the last one was chosen
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because of its greater physical plausibility. Specifically, it seems more reasonable to
assume that # is a function of internal changes associated with permanent shear
deformation. i.e.. the plastic shear strain. Proceeding in this manner, it was found
that the relationship between 21s and 7p was essentially linear and of the form:

21- 2#0 + m'y . (9-12)
3 6

where 2#s - 1.83 x 103 ksi and m = 1.42 x 106 ksi.

From physical considerations, one expects # to first increase during the initial
pure hydrostatic compression phase of the shear tests due to closure of existing
microcracks. But as shearing takes place under constant pressure, existing
microcracks will open while new microcracks will develop, leading to a decrease in U
with increasing shear strain. As the level of the fixed hydrostatic stress is increased.
the growth and nucleation of microcracks will begin at an increasingly larger value of
shear strain. Based upon this picture. it is difficult to conclude whether the values of
the initial unloading slopes obtained from the data in Figure 9.1(b) are realistic or
clouded by system effects. For example, the apparent increase in # with 7 implied
by Figure 9.1(b) may simply be due to creep. which is expected to increase with the
magnitude of the shear stress.

The determination of the shear hardening function Fs(a) is straightforward. It
was shown in Section 4.3.3 that. for the case of shear in the pressure of a fixed
hydrostatic stress. F is given by the following expression:

F" (9-13)Fs (o ) = T.(OR)

where r(a) and r(or ) denote, respectively, the shear stresses at failure
corresponding to the hydrostatic stresses a and a R  Recall that aR is a reference
hydrostatic stress, which has been selected here to be 8 ksi. Also note that since
T = .123 r. we can rewrite Eq. (9-13) in terms of the octahedral shear stress at
failure, r , as follows:

F"r = 0 (9-14)

-7(aR
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1
Figure 9.1(d) depicts the triaxial compression and triaxial extension failure

envelopes for the plain concrete considered. Inasmuch as the present application is
concerned with the non-cracking behavior of plain concrete, the fine details of the
failure surface are not important. Accordingly. we shall adopt the linear approximation

W for the triaxial compression failure envelope shown by the dashed line in Figure 9.1(d)
as the failure envelope for the model. On this basis, and in view of Eq. (9-14) with
rR = 6 ksi. we find that

Fs = 6 + oa. (9-15)

where 6 = 0.336 and o = 0.083 ksi " . It can be shown that when F depends on
a in the' form of Eq. (-15). the failure surface exhibited by the model is of the

Drucker-Prager type. in which the trace of the failure surface in the i-plane is a
circle.

To determine the shear-volumetric coupling parameter k. consider Figure 9.1(c)
which shows the manner in which E varies with r during shearing at several
different values of fixed hydrostatic stress. In the absence of contrary information, it
is assumed that the volumetric changes that occur during shear are irreversible. On
this basis, and using the data in Figure 9.1(b) and (c) for the reference stress
a = 8 ksi, the measured dependence of eP on 7 can be constructed, as shown in
Figure 9.2.

1 Equation (4-135). derived earlier in Section 4.3.3. provides a theoretical relation
between eP and 7P for shear at constant hydrostatic stresses which are located on the
linear portion of tre hydrostat; this becomes evident by noting that

70 = s /  '

(9-16)

= (x-1)/(ak).

The variation of eP with 7yP is therefore obtained in terms of the parameter k. sinceo.

the constant a is given in terms of k by Eq. (4-131). In this manner, the
dependence of eP on P. as shown in Figure 9.2. was determined for several selected
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I values for k. An inspection of the figure reveals that the curve for k = 1.5 provides
the best overall representation of the data. so we set

k = 1.5 (9-17)

Finally. to determine the function p(zs). we recall Eq. (4-139) which is valid
during shear at constant hydrostatic stress:

=L Oa 11+2ay- log I 2ay+ F .2-ay },(9-18)
where y = z - z* and z * denotes the value of z at the completion of the pure
hydrostatic loading phase. Also. during shear at constant hydrostatic stress, we can
write

= f 70 (9-19)

which can be combined with Eq. (9-18) to yield a relationship between 7p and z for
a prescribed value of a. Adopting the value of k given in Eq. (9-4). the constant a
is then known. In this manner, the relationship between 7p and z - z * shown in
Figure 9.3 was obtained. Upon using this result, together with the relationship
between r and 7P obtained from Figure 9.1(b). the dependence of r on z during
shear at constant gydrostatic stress was determined. The numerical method described
in Section 10.2 can then be used to obtain p(s ). The resulting function p(zS) was
represented by a two-term exponential series of tNhe form:

2 ar zs
p(zs) = Are- (9-20)

r=1

where

A1 =1.46 x 103 ksi a1 =100

A2 = 19.0 x 103 ksi a2 = 6,554

The extent to which the model, with the values of the parameters given in this
section, represents the data to which it was fitted is illustrated in Figure 9.1.
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9.3 Proof Tests of Model.

In the preceding section. the endochronic constitutive model described in
Section 9.1 was applied to the plain concrete data reported in Reference 19.1], with

1 the model parameters evaluated from a small subset of these data. The ability of the
resulting model to accurately portray the data to which it was fitted was described.
In this section. the capability of the model to predict measured behavior for a variety
of prescribed complex stress paths that were not used in determining the model
parameters is examined. For this purpose, a number of complex stress path tests
experimentally studied in Reference [9.11 is considered. The specific tests selected for
consideration below were chosen because they reveal a variety of different response
features exhibited by plain concrete and therefore allow various features of the model
to be exercised and tested. None of the proof-tests considered below were used in
fitting the model parameters. and no optimization techniques were employed to achieve
the results presented below.

Test I

This test was designed to explore the response of plain concrete to triaxial load
cycles which do not exhibit stress reversals. The loading history, shown in
Figure 9.4(a) and (b). consists first of cyclic hydrostatic loading up to 8 ksi. followed
by cyclic deviatoric loading along the triaxial compression path, as indicated in
Figure 9.4(b). The predicted and measured responses for this loading history are
given in Figure 9.4(c). As this figure reveals, the predicted and measured behaviors
are in good agreement, considering the usual data scatter for plain concrete. Note
that if the predicted response was simply translated to the right a small amount. the
agreement would be excellent. Such a shift appears justified in view of the fact that
the measured hydrostatic response for this particular test is somewhat stiffer than the
hydrostatic data to which the model was fit (see Figure 9.1(a)). Aside from this
difference, however, the qualitative features of the plain concrete behavior are obviously
captured very well by the model.
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U Tests 2 and 3

These tests were designed to explore the behavior of plain concrete for circular
stress paths in the deviatoric plane. The stress path, which is shown in
Figure 9.5(a). consisted first of monotonic hydrostatic compression to some pressures
a . followed by a circular load path in the deviatoric plane at some fixed value of the
octahedral shear stress. T . Comparisons between model predictions and data for the
deviatoric loading portions of these tests are shown in Figure 9.5(b) and (c). The
overall agreement is quite good. Note that if the data in Figure 9.5(c) were
translated vertically upward by a sufficient amount, the predicted and measured results
would be in reasonably good agreement. However. such a translation does not appear
to be justified on the basis of the data from replicate tests (not shown). which had
identical stress paths to Test 3. Therefore, the model appears to be somewhat too
soft during the proportional deviatoric loading leg of the test.

The results depicted in Figure 9.5 are also of interest for another reason.
Recently, the modern version of the endochronic theory - which forms the basis of the
model presented here - was criticized in the literature as being unable to properly
describe the response of concrete to what has been termed "loading-to-the-side".a Such loading is said to occur when the strain increment dt is tangent to the loading
surface in strain space. To the authors' knowledge. no data are currently available
for plain concrete which define its response to loading-to-the-side. Despite this, it is
claimed that plain concrete exhibits inelastic behavior for such loading. We note that
while the model's response to infinitesimal loading-to-the-side is purely elastic, its

* response to finite loading-to-the-side is inelastic. In Tests 2 and 3. the plain concrete
was subjected to loading-to-the-side, at least at the beginning of the circular stress
path and possibly when it crossed over the other two principal stress axes. The
uncertainty arises because the location and shape of the "loading surface" are not
known. In view of these considerations and the reasonably good agreement between
the data and the model for the circular stress paths, criticism of the model based on
perceived notions of the response of concrete to loading-to-the-side appears to be
unjustified.

9-13
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Figure 9.5 Circular stress paths in the deviatoric planes.
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Tests 4, 5 and 6

These tests were part of a larger group of tests designed to explore several
aspects of the response of plain concrete to complex stress paths for which two of
the principal stresses are equal. While the stress paths for Tests 4. 5 and 6 were
quite different, they nevertheless had a common stress state of a = 8 ksi and

= 4 ksi. A comparison of the strains developed in these tests at this common
stress state revealed the very significant dependence of the deformation on the
stress-path. Comparisons between the predicted and measured behavior of Tests 4. 5
and 6 are shown in Figures 9.6 to 9.8. where the prescribed stress histories are also
depicted. An inspection of these figures reveals that the model describes the observed
behavior quite well, with an accuracy that appears to be well within the data scatter.
This demonstrates the ability of the model to realistically account for the effect of
stress path on the behavior.

Tests 7, 8 and 9

The purpose of these tests was to investigate the response of plain concrete to
unsymmetric stress paths in a fixed deviatoric plane. The stress paths consisted of
hydrostatic compression to the 4 ksi deviatoric plane, then proportional loading in the
ir-plane along the s -axis until r = 2 ksi. followed by linear load paths which made
angles of 300. 60b and 900 with the triaxial compressive axis, as shown in
Figure 9.9(a). The predicted and measured responses for these tests are shown in
Figure 9.9(b). (c) and (d). From an inspection of the figures, it is apparent that the
location on the e -axis at which the non-proportional portion of the deviatoric loading
begins is consistently higher than the data in all three tests. It appears, therefore.
that the model is too soft for proportional excursions from the hydrostatic axis out
along the triaxial compression axis. confirming the same conclusion drawn earlier in
conjunction with the circular stress paths. Despite these small differences the model
provides an excellent description of the observed behavior of plain concrete in the
deviatoric plane.

L1
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Test 10

In this test. the response of plain concrete to the piece-wise linear loading path
shown in Figure 9.10(a) was explored. The loading history was designed so that all
possible uniaxial and equibiaxial stress states at a peak stress of 3.6 ksi was
achieved. The predicted and measured responses to this applied stress history are
depicted in Figure 9.10(b). Considering the usual scatter in concrete data. and the
complexity of the stress path. the agreement between the model and experiment is
considered excellent.

9.4 Remarks.

The success with which the endochronic model passed the various proof-tests
described above reveals that the model provides an excellent description of the
nonlinear, inelastic behavior of plain concrete for stress states below failure. There
are. however, several limitations of the model that should be kept in mind. First, by
virtue of the linear expression adopted for the function F (eP) in Eq. (9-11). the
model is limited to hydrostatic pressures which lie on or below the linear portion of
the virgin hydrostat. For the medium strength concrete considered here. the peak
pressures are therefore limited to about 15 ksi. To extend the model to encompass a
much wider range of pressures. a more general expression for FH(EP) is required.
Such an expression is discussed in Section 9.6. where the application to plain concrete
data covering a wider range of hydrostatic pressure is illustrated.

Secondly, because the fine details of the failure surface are not expected to have
a significant effect on the behavior of the model for peak stress states that are
sufficiently far from failure, a simple failure surface was adopted in which the function
F was taken to depend linearly on o. It can be shown that such a failure surface is
ot the Drucker-Prager type. with the trace of the surface in the i-plane being a circle.
A more realistic failure surface for plain concrete would allow F to depend not only
on a but also on J'. The incorporation of such a failure surfaces into the endochronic
model is described in Section 9.5 and illustrated through application to a variety of
plain concrete failure data.

Inasmuch as the above model is isotropic. it cannot account for the anisotropy
that develops when significant macrocracking with preferred orientation occurs. Also.
when there is shearing under a fixed hydrostatic pressure, the model exhibits only
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compaction. Thus. the dilatant behavior usually observed when cracked concrete is
sheared cannot be described by the above model.

The model described above. however, has been recently extended by Valanis [9.3]
to include the capability to treat developing damage. fracture and dilatancy. The
evolution of damage is described by a differential equation which depends upon the

1 tensile strain state. As damage develops in preferred directions, the model becomes
anisotropic and exhibits dilatancy. Inasmuch as this model is in the early stages of
development, a more detailed discussion of it will be given in the upcoming second
volume of Endochronic Plasticity by the present co-authors.

9.5 A Third Invariant Failure Surface for Plain Concrete.

When the shear kernel p(z ) is of such a form that a failure surface exists (see
Section 3.2.6 for requirements). the shear hardening function F defines the propertiesS

V of the failure surface. For isotropic media, the most general form of the failure
criterion can be expressed in terms of the three independent invariants of the stress
tensor, namely:

r = tr ( )
==

J 2 :s (9-22)

I j_ 3l3 J3

2 PJ2)2/3

where

= det (f) (9-23)

Here. the notation det(j) denotes the determinant of the components of Z. The
most general form of the failure criterion for isotropic media can therefore be
expressed in the form:
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J - (o',J). (9-24)

To determine the relation between the functons F and I. consider the case of
radial deformation at constant hydrostatic pressure of a plastically incompressible solid.
For this case. we can write

dp= n 4IdgPII = 0 ~ (9-2S)

so that

'jS r 1zS-_ Jls deP~ d s

: p(zs - dz' = j' p z ) - dz" (9-26)

0 0

During the initial hydrostatic loading process for which 0_ z 5 z° . we have 5s = 0.
Thus, if we set s s

W =Z (9-27)

it follows that

Z- Z' = W z 0 w z w- w" (9-28)
S S S

As a result. Eq. (9-26) can be rewritten in the form

sd5 s  .d5 sn p=zf - z') - dz= p(w - w') d-s dw- (9-29)

0 .0

It was shown earlier in Section 4.3.2 (Eq. (4-74)) that when the hydrostatic hardening
function F H is of the form:

F = e (9-30)
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where f is a positive constant. we have

d5  F(2cw (9-31)

dw - (1.cw)

where

C F (9-32)

and P. k are material constants. Substitution of Eq. (9-31) into Eq. (9-29) gives

=  Fs ' ' *  w')[ cw" * c2(w'2] 1 / 2
W

F (1 + cw') dw
0

Using the .results of Section 4.3.4. it can be shown that

rPw [2 cw" + c2(w')2] 1 / 2

lim J w W) (1 + cw') dw = MO, (9-34)

0

where

M J p(x)dx (9-35)
i ..

0

Thus. from Eqs. (9-33) and (9-34). we can write

2f = lIr m = D Fs MO (9-36)
W40
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where the superscript f denotes failure. It then follows that at failure we have

L F M (9-37)

The relation between the functions F and # is then obtained by eliminating FT
between Eqs. (9-24) and (9-37). with tfe result:

F -2 M (o,0) (9-38)

Therefore, to define F for a particular material, the function #(UJ) must be specified.
This is done below for plain concrete.

There are a number of advanced failure criteria for plain concrete which have
been proposed in the literature that have the general form of Eq. (9-24) (see Refs.
[9.41 to [9.91). Considering the large scatter in data between experimenters, as well
as between different testing devices (see Ref. 19.10]). most of the advanced failure
criteria noted above provide satisfactory descriptions of existing plain concrete failure
data. For critical assessments of most of the above failure models, the reader is
referred to References [9.6] and [9.91.

Inasmuch as all of the failure models noted above are reasonably accurate, and
none appear to have significant advantages in predictive capability over the others, we
select the model proposed by Peyton 19.8] for specific consideration in this section
because of our greater familiarity with it. A description of this failure model is given
below, where the corresponding form of the function #(or.0) is defined. The model is
then applied to failure data for plain concrete.

The failure criterion proposed in Reference [9.81 is given by the expression:

J2 J3
5(9-39)
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where r and a are. in general. smooth monotonic functions of the hydrostatic stress
a, i.e..

1" = "r(a).

(9-40)
a a a(01

The role of the function r(o) is to describe the effect of pressure on the meridians of

the failure surface, while the function a(a) determines the manner in which the trace

of the failure surface in the i-plane changes with a. In order for the trace to be
convex, it is necessary that 0 5 a 1. If a is a continuous decreasing function of a.
the trace of the failure surface in the jr-plane changes smoothly from a triangle
(a = 1) to a circle (a = o) with increasing a.

To express Eq. (9-39) in the form of Eq. (9-24). we note that by defining an
angle 6 in the ir-plane as shown in Figure 9.11 it follows that:

J = -sin 30 (9-41)

Solving Eq. (9-22b) for J3 and combining the result with Eq. (9-27) gives

J2-- a 2J 3 -/2  
(9-42)

which is of the form:

x2 - q x3 - 1. (9-43)

if we set:

q 2-J x 2 (9-44)

With the change of variable

1 (9-45)
y
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Figure 9.11 Deviatoric stress plane, showing the manner in which the angle 0
is defined.
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Eq. (9-43) can be written in the form:

y _ y + I = 0. (9-46)

With a further change of variable.

y = X sin , (9-47)

Eq. (9-46) becomes

sin3  L sin S 3= 0 (9-48)

We observe that this equation has the form of the following trigonometric identity:

sin 3  - sin + sin 3 = 0, (9-49)

if we set

2
X = T , sin 3 a = J . (9-50a,b)

From Eq. (9-50b). it follows that

= 1 [sin-' (aJ) + 2 ,] (9-51)

Upon combining Eqs. (9-44b). (9-45). (9-47). (9-50) and (9-51). we can write

2 =2 sin 1 sin- (aJ) + (9-52)

which is of the form of Eq. (9-24). To apply this expression to a specific set of
data. the functions a(a) and r(a) must be specified. A procedure for doing this is
described below.
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Generally, failure data are obtained from triaxial compression and triaxial
extension tests and. with this in mind. we define the ratio r as

r = j' (9-53)

0

where the subscripts c and e refer, respectively, to compression and extension and
both values of fJ' are taken at the same hydrostatic pressure. Considering
Eq. (9-52) with J = +1 for compression and J = -1 for extension, it can be shown
that

sin 2. - sin-a
r = 3 (9-54)

sin - sina
3 3

Upon solving for a. we find

a = sin {3tan' (foarJ (9-55)

Therefore. if we know the manner in which ('j) and (TJ2) depend on a from data.
then r(a) is known from Eq. (9-53) and a(a) cancbe found from Eq. (9-55).

To determine i-(o). we solve Eq. (9-52) for r(o) and set J = +1 to obtain

r~)= L- sin [I sin-' 1 a. 1r (9-56)

Therefore, since a(o) and the variation of (J 2)c with a are known, the function 'r(a)
can be found.

The procedure described above was used to determine the forms of a(a) and
r(a) for plain concrete, using the failure data shown in Figure 9.12. Here. data from
both triaxial compression and triaxial extension tests on plain concretes conducted by
several investigators on several different strengths of concrete are depicted. In this
manner, it was found that the data could be well represented by setting
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Figure 9.12 Comparison between predicted and measured failure states for
plain concrete.
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a a
0 (9-57a,b)

o ,T- + O T- O -

where

= 0.83

• r = -1.91 f'0 C (9-58)

= 1.24 Ff

= -2.69 f

The excellent ability of the failure model, with only four material parameters. to
correlate the failure data is shown in Figure 9-12.

To determine the corresponding expression for the shear hardening function F
we first note that. since the shear kernel function p(zs) is assumed to be of the form
of Eq. (9-7). it follows from Eq. (9-26) that

AM= z (9-5g)
MW a

r

Upon substituting the values for A and a given earlier in Eq. (9-21). we findrr

ma = 17.5 ksi . (9-60)

Equations (9-24). (9-25) and (9-40) may be combined to give the following expression
for F

c 9"

ssi n(aJ) +

where a(o) and 'r(a) are defined by Eqs. (9-57) and (9-58) and c = 0.07 ksi-.
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9.6 A Hydrostatic Model for High Pressures.

Under monotonically increasing pressure. it is observed that the hydrostatic
behavior of plain concrete is characterized by an initially convex stress-strain curve,
which eventually becomes concave and finally (asymptotically) linear as depicted earlier
in Figure 4.1. The linear portion is reversible, indicating that the material has
reached an elastic state. As the elastic state is approached. the stress and slope of
the hydrostatic pressure - plastic volumetric strain curve tend to infinity as the plastic
volumetric strain tends toward a critical value. Ep . which corresponds to complete
compaction. Further compression occurs elastically Cwith dEp = 0.

The role of the hardening function FH is to account for the effect of compaction
on the hydrostatic behavior and, since compaction is reflected through the plastic
volumetric strain. Jp. it is natural to take F H = FH(EP). It can be shown that, for
monotonic loading above the initial convex portion of the stress-strain curve, the
hydrostatic stress o and FH(EP) are related by an expression of the form:

a = o FH(ep) . (9-62)

where o is a positive material constant. Therefore. except for the constant multiplier

00 the function FH (P) describes the monotonic hydrostatic loading curve for all
pressures above the initial convex part of this curve.

The general restrictions that the function F H must satisfy, in addition to being a
monotonically increasing function of e . are:

FH(0) = 1

(9-63)

lim FH =

C

The first restriction follows simply from convenience and allows us to set 0= .
where a is the intercept on the a-axis shown in Figure 4.4. With 0o set to a in
Eq. (9-6), the virgin hydrostatic compression curve from A to C is then described by
the equation
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o F HP )  (9-64)

which proves convenient in applying the model to specific materials. The second
restriction arises from the fact that it takes an infinite pressure to close all pores.

*that is:

lim u = 0 (9-65)
ep.cp

C

In view of Eq. (9-64), condition (9-65) is satisfied by taking FH such that
condition (9-63b) is fulfilled.

The hydrostatic data to which the endochronic model was applied in Section 9.2
covered the range of pressures up to 15 ksi. Over this range, it was found that the
simple linear expression given by Eq. (9-11). which satisfies condition (9-63a). led to
an excellent description of the hydrostatic data. For higher pressures. however, this
linear form for F H is inadequate -and a more general expression which also satisfies
condition (9-63b) is required.

To extend the range of the model to high pressures, including elastic behavior
beyond full compaction, a suitable expression for F H is as follows:

F H + POE p + 7o (IP-- (9-66)

where P0. 70 and m are positive constants. This expression satisfies conditions (9-63)
and is a monotonically increasing function of J. There are, of course, other
expressions that satisfy these general requirements, also, but that given by Eq. (9-66)
appears to capture the behavior of plain concrete quite well, as shown in Figure 9.13.
Here, the response of the endochronic hydrostatic model, with F H defined according to
Eq. (9-66), to pure hydrostatic compression of plain concrete up to 65 ksi is
compared with the corresponding data reported in Reference [9.111. which unfortunately
provided very limited unloading data. The agreement between the model and the data
is considered quite good.

Finally, if high pressures that nearly cause complete compaction are not of
interest, the following simple expression for F H has been found to be adequate in
many cases:
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FH= ePEp  (9-67)

This expression satisfies only the first of the two conditions in Eq. (9-63). Also, it
- reduces, for small eP. to the linear expression for F adopted in Section 9.2.H
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Figure 9.13 Hydrostatic compression of plain concrete to high pressures.
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10. NUMERICAL METHODS

In this chapter. numerical methods for computationally dealing with several
aspects of the endochronic theory are presented. Included are an incremental
approach for integrating the endochronic equations for the case in which there is no
yield surface, and a numerical approach for determining the shear kernel function p(z).
using data obtained from shear tests conducted at fixed hydrostatic stress. A
numerical algorithm developed by Valanis and Fan [10.11) to deal with the endochronic
equations within a finite element framework under the conditions of plane stress and
plane strain was described earlier in Section 3.5.1. A much more extensive discussion
of numerical methods for computationally treating the endochronic equations is given
in the upcoming second volume of Endochronic Plasticity by the present authors.

10.1 An Incremental Approach for Numerically Integrating the Endochronic
Equations.

An incremental scheme is presented in this section for numerically integrating the
system of equations which govern the basic endochronic plasticity model without a
yield surface. The scheme is explicit and based on Euler's method. Accordingly. care
must be taken in applying the method to ensure that the prescribed increments are
sufficiently small so that the computed behavior does not depend upon the increment
size.* Otherwise. the scheme is straightforward. efficient and easy to implement.

Two different versions of the scheme are described below, namely, one which
assumes prescribed strain increments as input and one which assumes prescribed
stress increments as input. Both versions have had widespread application in the
past in studies of various materials.

The basic equations which govern the endochronic model under consideration
have been given earlier in Eqs. (3-1) to (3-8). but are repeated below for ready
reference:

= p zs - z-- dz" (10-1)
dz

0

An approach for increasing the computational speed of this method by over an
order of magnitude has been developed by Murakami and Read [10.2J.
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or Z' Jd(e dz' (10-2)

0

d= 2# (de - dePJ (10-3)

dar = K(de - den) (10-4)

dz 2 = IIdePH1 2 + k 2 (dep) 2  (10-5)

*dz S = dz/F

(10-6a, b)
dz H = dz/(kF H)

*The weakly singular kernel functions can be expressed in terms of Dirichlet series:

-a

p(z) = A re r (10-7)
r=1r

O(z) = 0 B Pie (1-8)

where in order to satisfy the Clausius-Duhem inequality, it is necessary that a r 0.
P. 0 and A 0. B. 0. Moreover, to ensure that p(z) and O(z) are singular at
the origin and integralile over a finite domain, we must have

T"A r= 7B~ 1 (10-9)
r=1 i=1
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and

A /a < 5, (10-10)
r Aj r  . i/P<

r=1 r=r

In applications of the theory to date, it has been found that two or three terms
of the series (10-7) and (10-8) are usually quite adequate for representing the kernel
functions. In such cases, however, care must be taken to ensure that the infinitely
large values of p(O) and #(0) are approximated by suitably large finite values. When
this is done. we can write:

n -a z• r
p(z) = A e (10-11)

r=l r

nL

i=1

where n is finite.

It then follows that the expressions for I and a given by Eqs. (10-1) and (10-2)
can be alternately written as

n

T Rr (10-13)
r=1r

n
"= P (10-14)=1

where r and P. satisfy the following ordinary differential equations:

d r Ar dT (10-15)

S S

dP i d_=-B (10-16)

dzH i i dzH
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From Eqs. (10-13) to (10-14). we can write:

dA = A dep - j dz (10-17)

do = B dep - P dzH (10-18)

where

nA = - Ar

r=1

n
= _r gr

(10-19)
n

B= Z B

P =I: pi P.

Equations (10-17) to (10-19) provide a simple approach for incrementally integrating
the stresses I and o. which is considerably more attractive from a computational
standpoint then numerically coping with the hereditary integrals in Eqs. (10-1) and
(10-2).

In that which follows, explicit numerical schemes are presented for incrementally
updating the endochronic equations given above when either the strain increments or
the stress increments are given. Because of the explicit nature of the scheme, it is
necessary that the increments be taken sufficiently small to ensure accuracy.

10.1.1 Prescribed Strain Increments At.

It is assumed that ,. a. £, P, C. EP, Q and P. are known at the beginning of
each prescribed strain increment. Ae. From Eqs. (10-17) and (10-18). we can write
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Al = A ASP - j Az (10-20)

Au = B ACP - P AzH (10-21)

If we now combine these equations with the incremental Hooke's Law. Eqs. (10-3)
and (10-4). and introduce Eqs. (10-6a.b). it follows that

(A + [20 (0-22

(BK) (KA P A (10-23)

Upon substituting these results into Eq. (10-5). the following quadratic expression for
Az is obtained:

a Az2 + b Az c = 0 (10-24)

where

a " 
2 ,

(A ( 20) 2 F2 (B + K.2F. 2

bG- + -- Al (10-25)b (A + )"2F S  (B + K)2 FH

c= - LA + 2 i. (B1 K22)

Equation (10-24) provides two roots Az 1.2' the one of interest being the one for which
Az ? 0. Once Az is known. Ag and tEP can be obtained from Eqs. (10-22) and
(10-23). after which A. and ha can be obtained from Eqs. (10-20) and (10-21).
Finally. Eqs. (10-15) and (10-16) are used to update the 2r and P.. This approach.
therefore, permits one to determine the stress increments, Aq. for prescribed
increments in the strain Al.

i n-g;



10.1.2 Prescribed Stress Increments Ag.

In this case. Z. o. t. P C. . r and P. are assumed to be known at the
beginning of each prescribed stress increment A . From Eqs. (10-6a.b). (10-17) and
(10-18). we can obtain the expressions:

A=p A+ Az (10-26)

ACP = ta + P- AZ] (10-27)

Upon substituting these results into Eq. (10-5). the following quadratic expression for
Az results:

a Az2 + b Az + c 0 (10-28)

where

(A Fs)2 - H J

At As (ku 21
A 2 B

Again. the root of interest from Eq. (10-28) is that for which Az 0 0. Once Az is
found from Eq. (10-28). Atp and Aep can be determined from (10-26) and (10-27).
after which Ae and Ae may be found from Eqs. (10-3) and (10-4). The Qr and the
P. are updated on the basis of Eqs. (10-15) and (10-16). This approach, therefore,
permits one to determine the strain increments At for prescribed increments in the
stress Ag.
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10.2. A Numerical Procedure for Determining the Shear Kernel Function.

In Section 4.3. it was shown that in the case of shear at a fixed hydrostatic
stress a. the shear stress - is given by an expression of the form

T(y) : { p(y - y') G(y°)dy' (10-30)

where

dy = dw = dz (10-31)

From experimental data obtained from shear tests at fixed o. the functions r(y) and
G(y) can be found When this has been done. Eq. (10-30) becomes a Volterra
equation of the first kind for the unknown kernel function p(y). In that which
follows, a numerical procedure is given for obtaining p(y) from Eq. (10-30). given the
functions r(y) and G(y).

Let y be a generic value of the variable y. We divide the interval [O.y] into
suitably small equal subintervals A such that

yn = nh (10-32)

The integral on the right-hand side of Eq. (10-30) can then be written in the
form

r (Y n) = prlYn - y')g(y')dy' +
J0

(10-33)

,na

+ "" PYn - y') g(y ') dy '
(n-1)A

or

n

'r = grM[(n - r . 1)A] - M[(n - r)A]) , (10-34)
r=1
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where by virtue of the mean value theorem

= g(Y "]  (10-35)

(r - 1)A _ y* 5 rA (10-36)

and

rA

M(rA) = JO p(y')dy' (10-37)

The function gr may be determined to the required degree of accuracy by making the
interval A sufficiently small.

In consequence. we have the relations

1 = Ag1M(A)

2 = AglM(2A) . Ag2M(A)

(10-38)

rn = AglM(nA) + Ag2M[(n - 1)A] + ... . AgnM(A)

where

Agr = g r - gr-1 (10-39)

This is a system of a linear simultaneous equations in M(A). M(2A) ... M(nA). Since
the Ag are known, then knowing rI. r ... T allows one to determine M(rA).
r = Li ... n. by successive substitution. 2The foflowing algorithm applies:

If

n-1
7n Agnil-mM (mA) (10-40)
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then

M (rA) n Ag1  (10-41)

Knowledge of M(y) thus allows the determination of p(y) since

p Ay) = (10-42)P() dy
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